Skip to main content

Advertisement

Log in

Symbiotic organism search algorithm applied to load frequency control of multi-area power system

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this article, a novel powerful metaheuristic optimization technique called symbiotic organism search (SOS) is proposed for the first time to solve the load frequency control problem (LFC). SOS pretends the symbiotic interaction strategies accepted by an organism to sustain in the ecosystem. Initially, an interconnected two-area reheat thermal power plant equipped with proportional–integral–derivative (PID) controller is considered for design and analysis. PID controller gains are optimally selected using SOS algorithm employing integral time absolute error based fitness function. To confirm the superiority of SOS algorithm, an extensive comparative analysis is performed with some newly published optimization methods reported in the literature. Time domain simulation results show that the dynamic stability of the concerned power system is effectively enhanced with SOS. Furthermore, the performance of the proposed method is appraised by changing system loading settings and system constraints in the range of \(\pm 50\% \). To authenticate the tuning ability of proposed SOS algorithm, the study is extended to two more test systems, namely (1) an unequal nonlinear three-area power system and (2) two-area multi-unit thermal-hydro-wind-diesel power plant including generation rate constraint, governor dead band, boiler dynamics, and time delay nonlinearities. Comparison with existing LFC schemes validates the efficacy of SOS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

SOS:

Symbiotic organism search

LFC:

Load frequency control

ACE:

Area control error

PID:

Proportional integral derivative

EA:

Evolutionary algorithm

ITAE:

Integral time absolute error

ITSE:

Integral time square error

ISE:

Integral square error

IAE:

Integral absolute error

TD:

Time delay

GRC:

Generation rate constraint

GDB:

Governor dead band

TD:

Time delay

BD:

Boiler dynamics

SLP:

Step load perturbation

BF:

Beneficial factor

MV:

Mutual vector

\(X_i\) :

ith organism of ecosystem

\(X_{best} \) :

Best organism

MDR:

Minimum damping ratio

\(n_p \) :

Population size

ub :

Upper bound

lb :

Lower bound

\(\dim \) :

Dimension of control variable

\(T_{final} \) :

Final simulation time

J :

Fitness function

\(T_{sg} \) :

Hydraulic time constant in sec

\(T_t \) :

Time constant of steam turbine in sec

\(K_r \) :

Gain of reheat unit

\(T_r \) :

Reheat time constant in sec

\(T_{ps} \) :

Time constant of power system in sec

\(K_{ps}\) :

Gain of power system

\(R_i \) :

Governor speed regulation constant of i th control area in Hz/pu MW

\(B_i \) :

Frequency biasing constant of i th control area in pu MW/Hz

\(\Delta f_i \) :

Frequency deviation of i th control area

\(\Delta P_{tie,i,j} \) :

Tie-line power deviation between ith and jth control areas

\(N_1 ,N_2 \) :

Fourier coefficients

\(\Delta P_D \) :

Load perturbation in pu

\(k_p ,k_i ,k_d \) :

Proportional, integral and derivative gains of PID-controller

References

  1. Hassan, M.F., Abouelsoud, A.A., Soliman, H.M.: Constrained load frequency control. Electr. Power Compon. Syst. 36(3), 266–279 (2008)

    Article  Google Scholar 

  2. IEEE standard definitions of terms for automatic generation control on electric power systems. IEEE Trans. Power Syst. PAS-89(6), 1356–1364 (1970)

  3. Chidambaram, I.A., Velusami, S.: Design of decentralized biased controllers for load frequency control of interconnected power systems. Electr. Power Compon. Syst. 33(12), 1313–1331 (2005)

    Article  Google Scholar 

  4. Shayeghi, H., Shayanfar, H.A., Jalili, A.: Load frequency control strategies: a state of-the-art survey for the researcher. Energy Convers. Manag. 50, 344–353 (2009)

    Article  MATH  Google Scholar 

  5. Konar, G., Mandal, K.K., Chakraborty, N.: Two Area Load Frequency Control of Hybrid Power System Using Genetic Algorithm and Differential Evolution Tuned PID Controller in Deregulated Environment. Trans. Eng. Technol. Springer 263–278 (2014)

  6. Sahu, R.K., Panda, S., Padhan, S.: A hybrid firefly algorithm and pattern search technique for automatic generation control of multi-area power systems. Int. J. Electr. Power Energy Syst. 64, 9–23 (2015)

    Article  Google Scholar 

  7. Sahu, R.K., Panda, S., Sekher, G.T.C.: A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power system. Int. J. Electr. Power Energy Syst. 64, 880–893 (2015)

    Article  Google Scholar 

  8. Sahu, R.K., Panda, S., Padhan, S.: A novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power system. Appl. Soft Comput. 29, 310–327 (2015)

    Article  Google Scholar 

  9. Sahu, B.K., Pati, S., Mohantya, P.K., Panda, S.: Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Appl. Soft Comput. 27, 240–249 (2015)

    Article  Google Scholar 

  10. Sahu, B.K., Pati, S., Panda, S.: Hybrid differential evolution particle swarm optimized fuzzy proportional integral derivative controller for automatic generation control of interconnected power system. IET Trans. Gen. Trans. Distr. 8(11), 1789–1800 (2014)

    Article  Google Scholar 

  11. Shiroei, M., Ranjbar, A.M., Amraee, T.: A functional model predictive control approach for power system load frequency control considering generation rate constraints. Int. Trans. Electr. Energy Syst. 23(2), 214–229 (2013)

    Article  Google Scholar 

  12. Guha, D., Roy, P.K., Banerjee, S.: Study of Dynamic Responses of an Interconnected Two-Area all Thermal Power System with Governor and Boiler Nonlinearities using BBO. In: Proceedings of IEEE 2015 Third International Conference on Computer Communication Control Information Technology (C3IT-2015), Academy of Technology-Hooghly, pp. 1–6 (2015)

  13. Guha, D., Roy, P.K., Banerjee, S.: Optimal Design of Superconducting Magnetic Energy Storage Based Multi-Area Hydro-Thermal System Using Biogeography Based Optimization. In: Proceedings of IEEE 2014 4th International Conference on Emerging Applications of Information Technology (EAIT-2014), ISI-Kolkata, pp. 52–57 (2014)

  14. Zare, K., Hagh, M.T., Morsali, J.: Effective oscillation damping of an interconnected multi-source power system with automatic generation control and TCSC. Int. J. Electr. Power Energy Syst. 65, 220–230 (2015)

    Article  Google Scholar 

  15. Guha, D., Roy, P.K., Banerjee, S.: Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 27, 97–115 (2016)

    Article  Google Scholar 

  16. Shoults, R.R.: Jativa Ibarra, J.A.: Multi area adaptive LFC developed for a comprehensive AGC simulation. IEEE Trans. Power Syst. 8(2), 541–547 (1993)

    Article  Google Scholar 

  17. Demirören, A., Zeynelgil, H.L., Sengor, N.S.: The application of NN technique to automatic generation control for the power system with three areas including SMES units. Eur. Trans. Electr. Power 13(4), 227–238 (2003)

    Article  Google Scholar 

  18. Demiroren, A.: Automatic generation control using ANN technique for multi-area power system with SMES units. Electr Power Compon. Syst. 32(2), 193–213 (2004)

    Article  Google Scholar 

  19. Bevrani, H., Daneshfar, F., Hiyama, T.: A new intelligent agent-based AGC design with real-time application. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 994–1002 (2012)

    Article  Google Scholar 

  20. Liu, S., Liu, P.X., El-Saddik, A.: Modeling and stability analysis of automatic generation control over cognitive radio networks in smart grids. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 223–234 (2015)

    Article  Google Scholar 

  21. Umrao, R., Chaturvedi, D.K.: A novel fuzzy control approach for load frequency control. Recent Adv. Syst. Model. Appl. Springer 188, 239–247 (2013)

    Google Scholar 

  22. Pothiya, S., Ngamroo, I.: Optimal fuzzy logic based PID controller for load frequency control including superconducting magnetic energy storage units. Energy Convers. Manag. 49, 2833–2838 (2008)

    Article  Google Scholar 

  23. Das, D., Kothary, M.L., Kothary, D.P., Nanda, J.: Variable structure control strategy to automatic generation control of interconnected reheat thermal power system. IEE Proc. Control Theory Appl. 138(6), 579–585 (1991)

    Article  Google Scholar 

  24. Khuntia, S.R., Panda, S.: Simulation study for automatic generation control of a multi-area power system by ANFIS approach. Appl. Soft Comput. 12(1), 333–341 (2012)

    Article  Google Scholar 

  25. Patra, S., Sen, S., Ray, G.: Design of robust load frequency controller: H\(\infty \) loop shaping approach. Electr. Power Compon. Syst. 35(7), 769–783 (2007)

    Article  Google Scholar 

  26. Ismayil, C., Kumar, R.S., Sindhu, T.K.: Optimal fractional order PID controller for automatic generation control of two-area power systems. Int. Tran, Elect Energy Sys 25(12), 3329–3348 (2015)

  27. Shayeghi, H., Jalili, A., Shayanfar, H.A.: Multi-agent fuzzy load frequency control using PSO. Energy Convers. Manag. 49(10), 2570–2580 (2008)

    Article  Google Scholar 

  28. Panda, S., Yegireddy, N.K.: Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 53, 54–63 (2013)

    Article  Google Scholar 

  29. Guha, D., Roy, P.K., Banerjee, S.: Study of differential search algorithm based automatic generation control of an interconnected thermal-thermal system with governor dead-band. Appl. Soft Comput. 52, 160–175 (2017)

    Article  Google Scholar 

  30. Naidu, K., Mokhlis, H., Bakar, A.H.A.: Multi-objective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst. 55, 657–667 (2014)

    Article  Google Scholar 

  31. Abdelaziz, A.Y., Ali, E.S.: Cuckoo Search algorithm based load frequency controller design for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst. 73, 632–643 (2015)

    Article  Google Scholar 

  32. Nanda, J., Mishra, S., Saikia, L.C.: Maiden application of bacterial foraging-based optimization technique in multi-area automatic generation control. IEEE Trans. Power Syst. 24(2), 602–609 (2009)

    Article  Google Scholar 

  33. Mohanty, B., Panda, S., Hota, P.K.: Differential evolution algorithm based automatic generation control for interconnected power systems with non-linearity. Alex. Eng. J. 53, 537–552 (2014)

    Article  Google Scholar 

  34. Roy, P.K., Sur, A., Pradhan, D.K.: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Eng. Appl. Arti. Intell. 26(10), 2516–2524 (2013)

    Article  Google Scholar 

  35. Katsigianni, Y.A., Kanellos, F.D., Papaefthimiou, S.: A software tool for capacity optimization of hybrid power systems including renewable energy technologies based on a hybrid genetic algorithm-tabu search optimization methodology. Energy Syst. 7(1), 33–48 (2016)

    Article  Google Scholar 

  36. Krishnan, V., Das, T.: Slow dynamic model of compressed air energy storage and battery storage technologies for automatic generation control. Energy Syst. 7(2), 271–295 (2016)

    Article  Google Scholar 

  37. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  38. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  39. Guha, D., Roy, P.K., Banerjee, S.: Oppositional biogeography-based optimisation applied to SMES and TCSC-based load frequency control with generation rate constraints and time delay. Int. J. Power Energy Convers. 7(4), 391–423 (2016)

    Article  Google Scholar 

  40. Tripathy, S.C., Bhatti, T.S., Jha, C.S., Malik, O.P., Hope, G.S.: Sampled data automatic generation control analysis with reheat steam turbines and governor dead band. IEEE Trans. Power Appar. Syst. 103(5), 1045–1051 (1984)

    Article  Google Scholar 

  41. Cheng, M.Y., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)

    Article  Google Scholar 

  42. Tripathy, S.C., Balasubramanian, R., Nair, P.S.C.: Effect of superconducting magnetic energy storage on automatic generation control considering governor dead band and boiler dynamics. IEEE Trans. Power Syst. 7(3), 1266–1273 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipayan Guha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, D., Roy, P.K. & Banerjee, S. Symbiotic organism search algorithm applied to load frequency control of multi-area power system. Energy Syst 9, 439–468 (2018). https://doi.org/10.1007/s12667-017-0232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-017-0232-1

Keywords

Navigation