Skip to main content

Advertisement

Log in

SMART-Invest: a stochastic, dynamic planning for optimizing investments in wind, solar, and storage in the presence of fossil fuels. The case of the PJM electricity market

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a stochastic dynamic planning model called SMART-Invest, which is capable of optimizing investment decisions in different electricity generation technologies. SMART-Invest consists of two layers: an optimization outer layer and an operational core layer. The operational model captures hourly variations of wind and solar over an entire year, with detailed modeling of day-ahead commitments, forecast uncertainties and ramping constraints. The outer layer requires optimizing an unknown, non-convex, non-smooth, and expensive-to-evaluate function. We present a stochastic search algorithm with an adaptive stepsize rule that can find the optimal investment decisions quickly and reliably. By properly capturing the marginal cost of investments in wind, solar and storage, we feel that SMART-Invest produces a more realistic picture of an optimal mix of wind, solar and storage, resulting in a tool that can provide more accurate guidance for policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Archer, C., Simao, H. P., Kempton, W., Powell, W., Dvorak, M. (2015). The challenge of integrating offshore wind power in the US electric grid. part I: Wind forecast error. Princeton University, Dept. of Operations Research and Financial Engineering

  2. Archer, C. L., Jacobson, M. Z.: Supplying baseload power and reducing transmission requirements by interconnecting wind farms. J. Appl. Meteorol. Climatol 46(11), 1701–1717. ISSN:15588424 (2007)

  3. Asamov, T., Ruszczyski, A.: Time-consistent approximations of risk-averse multistage stochastic optimization problems. Math. Program (2014). ISSN:0025-5610. doi:10.1007/s10107-014-0813-x

  4. Bazaraa, M.S., Sherali, H.D., Shetty C.M.: Nonlinear programming: theory and algorithms. Wiley, Hoboken, NJ (2013)

  5. Becker, S., Frew, B., Andresen, G., Zeyer, T., Schramm, S., Greiner, M., Jacobson, M.: Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions (2014). arXiv preprint arXiv:1402.2833

  6. Bertsekas, D.P.: Nonlinear programming. Athena scientific, Belmont (1999)

  7. Budischak, C., Sewell, D., Thomson, H., Mach, L., Veron, D.E., Kempton, W.: Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sour. 225, 60–74 (2013)

    Article  Google Scholar 

  8. Delucchi, M.A., Jacobson, M.Z.: Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 39(3), 1170–1190 (2011). ISSN:03014215. doi:10.1016/j.enpol.2010.11.045

  9. Ekren, O., Ekren, B.Y.: Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 87(2), 592–598 (2010). ISSN:03062619. doi:10.1016/j.apenergy.2009.05.022

  10. Gabriel, S.A., Conejo, A.J., Fuller, J.D., Hobbs, B.F., Ruiz, C.: Complementarity modeling in energy markets, vol. 180. Springer Science & Business Media (2012)

  11. Jacobson, M.Z., Delucchi, M.A.: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3), 1154–1169 (2011). ISSN:03014215. doi:10.1016/j.enpol.2010.11.040

  12. Jacobson, M.Z., Delucchi, M.A., Ingraffea, A.R., Howarth, R.W., Bazouin, G., Bridgeland, B., Burkart, K., Chang, M., Chowdhury, N., Cook, R., et al.: A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy 73, 875–889 (2014)

  13. Jacobson, M.Z., Howarth, R.W., Delucchi, M.A., Scobie, S.R., Barth, J.M., Dvorak, M.J., Klevze, M., Katkhuda, H., Miranda, B., Chowdhury, N.A., et al.: Examining the feasibility of converting New York state‘s all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy 57, 585–601 (2013)

  14. Kempton, W., Pimenta, F.M., Veron, D.E., Colle, B.A.: Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. 107(16), 7240–7245 (2010)

    Article  Google Scholar 

  15. Nahmmacher, P., Schmid, E., Hirth, L., Knopf, B.: Carpe diem: a novel approach to select representative days for long-term power system modeling. Energy 112, 430–442 (2016)

    Article  Google Scholar 

  16. Philpott, A., de Matos, V., Finardi, E.: On solving multistage stochastic programs with coherent risk measures. Oper. Res. 61(4), 957–970 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Powell, W.B.: Clearing the jungle of stochastic optimization. Informs Tutor. Oper. Res. 2014, 109–137 (2014)

    Google Scholar 

  18. Powell, W.B., Meisel, S.: Tutorial on Stochastic Optimization in Energy II : an energy storage illustration. IEEE Trans. Power Syst XX(X), 1–8 (2015)

  19. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Regis, R.G., Shoemaker, C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007)

  21. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. Inf. J. Comput. 19(4), 497–509 (2007)

  22. Ryan, S.M., Wets, R.J.-B., Woodruff, D.L., Silva-Monroy, C., Watson, J.-P.: Toward scalable, parallel progressive hedging for stochastic unit commitment. In: Power and Energy Society General Meeting (PES), 2013 IEEE, pp. 1–5. IEEE (2013)

  23. Simao, H.P., Powell, W., Archer, C., Kempton, W.: The challenge of integrating offshore wind power in the US electric grid. part II: Simulation of electricity market operations. Renew. Energy 103, 418–431 (2017)

    Article  Google Scholar 

  24. Takriti, S., Birge, J.R., Long, E.: A stochastic model for the unit commitment problem. Power Syst. IEEE Trans. 11(3), 1497–1508 (1996)

    Article  Google Scholar 

  25. Wogrin, S., Galbally, D., Ramos, A.: CCGT unit commitment model with first-principle formulation of cycling costs due to fatigue damage. Energy 113, 227–247 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Khazaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaei, J., Powell, W.B. SMART-Invest: a stochastic, dynamic planning for optimizing investments in wind, solar, and storage in the presence of fossil fuels. The case of the PJM electricity market. Energy Syst 9, 277–303 (2018). https://doi.org/10.1007/s12667-016-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0226-4

Keywords

Navigation