Skip to main content

Advertisement

Log in

A comprehensive protection scheme for micro-grid using fuzzy rule base approach

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The paper presents a comprehensive primary and backup protection scheme for micro-grid using fuzzy rule base approach. The proposed scheme starts with pre-processing of the retrieved current and voltage signals at both ends of the faulted feeder and adjacent feeder to compute the differential features. The differential features are used to build two separate decision trees (DTs) for the primary and backup protection. The differential features between immediate buses of faulted feeder are considered for primary protection and differential features between far end buses of faulted and adjacent feeders are used to build decision tree for secondary protection. From the developed decision tree classification boundaries, the fuzzy membership functions are generated and the corresponding fuzzy rule base is formulated for final relaying decision. The proposed scheme is tested for numbers of fault and no fault events simulated in the studied micro-grid with wide variations in system parameters and fault parameters in different operating mode. The extensive test results show the efficacy of the proposed protection scheme to provide a reliable protection measure to both primary and backup protection of micro-grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stadler, M., Siddiqui, A, Marnay, C, Aki, H., Lai, J.: Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur. Trans. Electr. Power 2(2), 1291–1309 (2009)

  2. Venkataramanan, G., Marnay, C.: A larger role for micro-grids. IEEE Power Energy Mag. 6(3), 78–82 (2008)

    Article  Google Scholar 

  3. Vita, V., Ekonomou, L., Christodoulou, C.A.: ’The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. (2015). doi:10.1007/s12667-015-0175-3

  4. Fan, N., Izraelevitz, D., Pan, F., Pardalos, P.M., Wang, J.: A mixed integer programming approach for optimal power grid intentional islanding. Energy Syst. 3(1), 77–93 (2012)

    Article  Google Scholar 

  5. Donadel, C.B., Fardin, J.F., Encarnacao, L.F.: Electrical distribution network operation with a presence of distributed generation units in a Pre Smart Grid environment using a clustering-based methodology. Energy Syst. 6(4), 455–477 (2015)

    Article  Google Scholar 

  6. Girgis, A., Brahma, S.M.: Effect of distributed generation on protective device coordination in distribution system, system. In: Proc. Large Eng. Syst. Conf. Power Eng., pp. 115–119 (2001)

  7. Mahat, P., Chen, Z., Bak-Jensen, B., Bak, C.L.: A simple adaptive over current protection of distributed systems with distributed generations. IEEE Trans. Smart Grid. 2(3), 428–437 (2011)

    Article  Google Scholar 

  8. Ustun, T.S., Ozansoy, C., Zayegh, A.: Fault current coefficient and time delay assignment for microgrid protection system with central protection unit. IEEE Trans. Power Sys. 28(2), 598–606 (2013)

    Article  Google Scholar 

  9. Brahma, S.M., Girgis, A.: Development of adaptive protection scheme for distribution systems with high penetration of distributed deneration. IEEE Trans. Power Del. 19(1), 56–63 (2004)

    Article  Google Scholar 

  10. Wan, H., Li, K.K., Wong, K.P.: An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system. IEEE Trans. Ind. Appl. 46(5), 2118–2124 (2010)

    Article  Google Scholar 

  11. Hadzi-Kostova, B., Styczynski, Z.: Network protection in distribution systems with dispersed Generation. In: Proc. Transm. Distrib. Conf. Exhibit. pp. 1–6 (2006)

  12. Zamani, M.A., Sidhu, T.S., Yazdani, A.: A protection strategy and microprocessor-based relay for low-voltage micro-grids. IEEE Trans. Power Del. 26(3), 1873–1883 (2011)

    Article  Google Scholar 

  13. Redfern, M. A., Al-Nasseri, H.: Protection of micro-grids dominated by distributed generation using solid state converters. In: IET 9th international conference on Develop. Power Syst. Protection, pp. 670–674 (2008)

  14. Zeineldin, H.H, El-Saadany, E.F., Salama, M.M.A.: Distributed generations micro-grid operation: control and protection. In: Proc. Power Syst. Conf., pp. 105–112 (2006)

  15. Kar, S., Samantaray, S.R.: Time-frequency transform-based differential scheme for micro-grid protection. IET Genr. Transm. Distrib. 8(2), 310–320 (2013)

    Article  Google Scholar 

  16. Kar, S., Samantaray, S. R., Zadeh, M.D.: Data-mining model based intelligent differential microgrid protection scheme. IEEE Syst. J. (2015) (in press)

  17. Ustun, T.S., Ozansoy, C., Zayegh, A.: Modelling of a centralized microgrid protection system and distributed energy resources according to IEC61850-7-420. IEEE Trans. Power Syst. 27(3), 1560–1567 (2012)

    Article  Google Scholar 

  18. Ustun, T.S., Ozansoy, C., Zayegh, A.: Simulation of communication infrastructure of a centralized microgrid protection system based on IEC 61850-7-420. In: IEEE Third International Conference on Smart Grid Communications, pp. 492–497 (2012)

  19. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, 2nd Edition, pp. 745. Springer-Verlag, New York (2009)

  20. Kar, S., Samantaray, S.R.: Data-mining-based intelligent anti-islanding protection relay for distributed generations. IET Genr. Transm. Distrib. 8(4), 629–639 (2014)

    Article  Google Scholar 

  21. El-Arroudi, K., Joos, G., Kamwa, I., McGillis, D.T.: Intelligent-based approach to islanding detection in distributed generation. IEEE Trans. Power Del. 22(2), 828–835 (2007)

    Article  Google Scholar 

  22. Jamehbozorg, A., Shahrtash, S.M.: A decision-tree-based method for fault classification in single-circuit transmission lines. IEEE Trans. Power Del. 25(4), 2190–2196 (2010)

    Article  Google Scholar 

  23. Amraee, T., Ranjbar, S.: Transient instability prediction using decision tree technique. IEEE Trans. Power Syst. 28(3), 3028–3037 (2013)

    Article  Google Scholar 

  24. Rattle (the R Analytical Tool to Learn Easily), by D. Williams, ver. 2.6, Dec 2010 [on line]: http://rattle.togaware.com/

  25. Kar, S., Samantaray, S.R.: A fuzzy rule base approach for intelligent protection of microgrids. Electr. Power Compon. Syst. 43(18), 2082–2093 (2015)

    Article  Google Scholar 

  26. Zeidler, J., Schlosser, M.: Continuous-valued attributes in fuzzy decision trees. In: Proc. of Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 395–400 (1996)

  27. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69, 125–139 (1995)

    Article  MathSciNet  Google Scholar 

  28. Wang, X.Z., Chen, B., Qian, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets Syst. 112, 117–125 (2000)

    Article  MathSciNet  Google Scholar 

  29. Crockett, K., Bandar, Z., Mclean, D., O’Shea, J.: On constructing a fuzzy inference framework using crisp decision trees. Fuzzy Sets Syst. 157(1), 2809–2832 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nayak, P.K., Pradhan, A.K., Bajpai, P.: Wide-area measurement-based backup protection for power network with series compensation. IEEE Trans. Power Del. 29(4), 1970–1977 (2014)

    Article  Google Scholar 

  31. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: Optimal protection coordination for microgrids with grid-connected and islanded capability. IEEE Trans. Indust Elects. 60(4), 1668–1677 (2013)

  32. Sortomme, E., Venkata, S.S., Mitra, J.: Microgrid protection using communication-assisted digital relays. IEEE Trans. Power Del. 25(4), 2789–2796 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S. A comprehensive protection scheme for micro-grid using fuzzy rule base approach. Energy Syst 8, 449–464 (2017). https://doi.org/10.1007/s12667-016-0204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0204-x

Keywords

Navigation