Skip to main content

Advertisement

Log in

Optimal carbon capture and storage contracts using historical CO\(_2\) emissions levels

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In an effort to reduce carbon dioxide (CO\(_2\)) emissions to the atmosphere, carbon capture and storage (CCS) technology has been developed to collect CO\(_2\) from emissions generators and store it underground. Recent proposed legislation would limit the volume of emissions generated from power sources, effectively requiring some sources to participate in CCS. Both emissions sources and storage operators require incentives to enter into contracts to capture excess emissions at the source, and transport and store the CO\(_2\) underground. As the level of emissions from power plants is stochastic and carryover into future time periods is expensive, we develop a newsvendor model to determine the optimal price and volume of these contracts to maximize the expected profit of the storage operator and encourage the participation of multiple emissions sources. Because the storage operator has a limit on the amount of CO\(_2\) that can be injected each month, this limit affects the allocation of the optimal contract amounts between the emitters. The distribution of emissions and relative costs of transportation also influence the optimal policy. In addition to analytical solutions, we present data-driven methods for using correlated emissions data to determine the optimal price and volume of these contracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker, E., Nemet, G., Rasmussen, P.: Modeling the costs of carbon capture. In: Zheng, Q.P., Rebennack, S., Pardalos, P.M., Pereira, M.V.F., Iliadis, N.A. (eds.) Handbook of CO\(_2\) in Power Systems Energy Systems Energy Systems, pp. 349–372. Springer, Berlin (2012)

    Google Scholar 

  2. Benjaafar, S., Li, Y., Daskin, M.: Carbon footprint and the management of supply chains: insights from simple models. IEEE Trans. Autom. Sci. Eng. 10(1), 99–116 (2013)

    Article  Google Scholar 

  3. Bertsimas, D., Thiele, A.: A data-driven approach to newsvendor problems. Tech. rep., Massachusetts Institute of Technology, Cambridge, MA (2005)

  4. Cachon, G.P.: Retail store density and the cost of greenhouse gas emissions. Manag. Sci. (2013)

  5. Cai, W., Singham, D., Craparo, E., White, J.: Pricing contracts under uncertainty in a carbon capture and storage framework. Energy Econ. 34(1), 56–62 (2014)

    Article  Google Scholar 

  6. Caro, F., Corbett, C.J., Tan, T., Zuidwijk, R.: Carbon-optimal and carbon-neutral supply chains (2011, working paper)

  7. David, J., Herzog, H.: The cost of carbon capture. In: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, pp. 985–990 (2000)

  8. Davison, J.: Performance and costs of power plants with capture and storage of CO\(_2\). Energy 32(7), 1163–1176 (2007)

    Article  Google Scholar 

  9. Environmental Protection Agency: 40 CFR Part 60: standards of performance for greenhouse gas emissions from new stationary sources: electrical utility generating units, Washington, D.C. EPA-HQ-OAR-2006-0790 (2013)

  10. Environmental Protection Agency: 40 CFR Part 60: carbon pollution emission guidelines for existing stationary sources: electrical utility generating units; Proposed rule, Washington, D.C. EPA-HQ-OAR-2013-0602 (2014)

  11. Esposito, R.A., Monroe, L.S., Friedman, J.S.: Deployment models for commercialized carbon capture and storage. Environ. Sci. Technol. 45(1), 139–146 (2011)

    Article  Google Scholar 

  12. Finley, R.J., Frailey, S.M., Leetaru, H.E., Senel, O., Couëslan, M.L., Scott, M.: Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois, USA. Energy Procedia 37, 6149–6155 (2013)

    Article  Google Scholar 

  13. Fleten, S.-E., Lien, K., Ljønes, K., Pagès-Bernaus, A., Aaberg, M.: Value chains for carbon storage and enhanced oil recovery: optimal investment under uncertainty. Energy Syst. 1(4), 457–470 (2010)

    Article  Google Scholar 

  14. Global CCS Institute: Global status of large-scale integrated CCS projects, June 2012 update. Global CCS Institute, Canberra (2012)

  15. Huang, Y., Rebennack, S., Zheng, Q.P.: Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Syst. 4(4), 315–353 (2013)

    Article  Google Scholar 

  16. Huang, Y., Zheng, Q.P., Fan, N., Aminian, K.: Optimal scheduling for enhanced coal bed methane production through CO\(_2\) injection. Appl. Energy 113, 1475–1483 (2014)

  17. Keating, G.N., Middleton, R.S., Viswanathan, H.S., Stauffer, P.H., Pawar, R.J.: How storage uncertainty will drive CCS infrastructure. Energy Procedia 4, 2393–2400 (2011)

    Article  Google Scholar 

  18. Kemp, A.G., Kasim, A.S.: A futuristic least-cost optimisation model of CO\(_2\) transportation and storage in the UK/UK Continental Shelf. Energy Policy 38, 3652–3667 (2010)

    Article  Google Scholar 

  19. Klokk, Ø., Schreiner, P., Pages-Bernaus, A., Tomasgard, A.: Optimizing a CO\(_2\) value chain for the Norwegian Continental Shelf. Energy Policy 38, 6604–6614 (2010)

    Article  Google Scholar 

  20. Middleton, R., Bielicki, J.: A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy 37(3), 1052–1060 (2009)

    Article  Google Scholar 

  21. Middleton, R., Kuby, M., Wei, R., Keating, G., Pawar, R.: A dynamic model for optimally phasing in CO\(_2\) capture and storage infrastructure. Environ. Model. Softw. (2012)

  22. Rohlfs, W., Madlener, R.: Valuation of CCS-ready coal-fired power plants: a multi-dimensional real options approach. Energy Syst. 2(3–4), 243–261 (2011)

    Article  Google Scholar 

  23. Rubin, E.S., Chen, C., Rao, A.B.: Cost and performance of fossil fuel power plants with CO\(_2\) capture and storage. Energy Policy 35(9), 4444–4454 (2007)

    Article  Google Scholar 

  24. Song, J., Leng, M.: Analysis of the Single-Period Problem Under Carbon Emissions Policies. International Series in Operations Research and Management Science, chap. 13, pp. 297–313. Springer, Berlin (2012)

  25. U.S. Environmental Protection Agency: Air Markets Program Data (2013). http://www.ampd.epa.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashi I. Singham.

Appendices

Appendix A: Proof of Proposition 1

Proof of Proposition 1

To solve the constrained optimization problem \(\mathbf {(P2)}\), we apply the Lagrangian method. Let \(\mathcal {L}(q_1, q_2; \lambda )=E\Pi ^D(q_1, q_2 | p) - \lambda \cdot (q_1+q_2 - Q).\) The Karush–Kuhn–Tucker conditions for the optimal solution are:

$$\begin{aligned}&\frac{\partial \mathcal {L}(q_1, q_2; \lambda )}{\partial q_1} = \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1}-\lambda =0 \end{aligned}$$
(11)
$$\begin{aligned}&\frac{\partial \mathcal {L}(q_1, q_2; \lambda )}{\partial q_2} = \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_2}-\lambda =0 \end{aligned}$$
(12)
$$\begin{aligned}&\lambda \cdot (q_1+q_2-Q)=0 \end{aligned}$$
(13)
$$\begin{aligned}&q_1+q_2-Q \le 0\end{aligned}$$
(14)
$$\begin{aligned}&q_1, q_2, \lambda \ge 0 \end{aligned}$$
(15)

To compute \(\frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1}\) and \(\frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_2}\), we first rewrite the profit function according to Fig. 1 as

$$\begin{aligned}&E\Pi ^D(q_1,q_2 | p) =-K-\alpha _1 \cdot q_1-\alpha _2 \cdot q_2 + \int _{E_1=0}^{q_1}\int _{E_2=0}^{q_2} (p-c) \cdot (E_1+E_2) dF_2(E_2) dF_1(E_1) \nonumber \\&\quad + \int _{E_2=0}^{q_2} \int _{E_1=q_1}^{Q-E_2} (p-c) \cdot (E_1+E_2)-\beta _1(E_1-q_1) dF_1(E_1) dF_2(E_2) \nonumber \\&\quad + \int _{E_2=0}^{q_2} \int _{E_1=Q-E_2}^{\infty } (p-c) \cdot Q-\beta _1(Q-E_2-q_1)dF_1(E_1)dF_2(E_2) \nonumber \\&\quad + \int _{E_1=0}^{q_1} \int _{E_2=q_2}^{Q-E_1} (p-c) \cdot (E_1+E_2)-\beta _2(E_2-q_2) dF_2(E_2) dF_1(E_1) \nonumber \\&\quad + \int _{E_1=0}^{q_1}\int _{E_2=Q-E_1}^{\infty } (p-c) \cdot Q-\beta _2(Q-E_1-q_2) dF_2(E_2) dF_1(E_1) \nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\int _{E_1=q_1}^{Q-E_2} (p-c) \cdot (E_1+E_2)-\beta _1(E_1-q_1)- \beta _2(E_2-q_2) dF_1(E_1) dF_2(E_2)\nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\int _{E_1=Q-E_2}^{\infty } (p-c) \cdot Q-\beta _1(Q-E_2-q_1) - \beta _2(E_2-q_2) dF_1(E_1) dF_2(E_2) \nonumber \\&\quad + \int _{E_1=q_1}^{\infty }\int _{E_2=Q-q_1}^{\infty } (p-c) \cdot Q-\beta _2(Q-q_1-q_2) dF_2(E_2) dF_1(E_1). \end{aligned}$$
(16)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1}&= -\alpha _1+f_1(q_1) \int _{E_2=0}^{q_2} (p-c) \cdot (q_1+E_2) dF_2(E_2)\nonumber \\&\quad + \int _{E_1=q_1}^{Q-E_2}\left( \int _{E_2=0}^{q_2}\beta _1dF_2(E_2)\right) dF_1(E_1)\nonumber \\&\quad - f_1(q_1) \int _{E_2=0}^{q_2}(p-c) \cdot (q_1+E_2)dF_2(E_2)\nonumber \\&\quad +\int _{E_1=Q-E_2}^{\infty }\left( \int _{E_2=0}^{q_2} \beta _1 dF_2(E_2) \right) dF_1(E_1)\nonumber \\&\quad + f_1(q_1) \int _{E_2=q_2}^{Q-q_1} (p-c) \cdot (q_1+E_2)-\beta _2(E_2-q_2) dF_2(E_2) \nonumber \\&\quad + f_1(q_1) \int _{E_2=Q-q_1}^{\infty }(p-c) Q-\beta _2(Q-q_1-q_2) dF_2(E_2) \nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\left( \int _{E_1=q_1}^{Q-E_2}\beta _1 dF_1(E_1) \!-\! f_1(q_1) \cdot \left[ (p\!-\!c) \cdot (q_1\!+\!E_2)\!-\!\beta _2(E_2\!-\!q_2)\right] \right) dF_2(E_2)\nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\left( \int _{E_1=Q-E_2}^{\infty }\beta _1 dF_1(E_1)\right) dF_2(E_2) \nonumber \\&\quad + f_2(Q-q_1) \int _{E_1=q_1}^{\infty } (p-c) Q-\beta _2(Q-q_1-q_2) dF_{1}(E_{1})\nonumber \\&\quad + \int _{E_1=q_1}^{\infty }\!\!\left( \int _{E_2=Q-q_1}^{\infty } \beta _2 dF_2(E_2) \!-\!f_2(Q\!-\!q_1) \cdot \left[ (p\!-\!c)\cdot Q\!-\!\beta _2(Q\!-\!q_1\!-\!q_2)\right] \right) dF_1(E_1)\nonumber \\&\quad - f_1(q_1) \int _{E_2=Q-q_1}^{\infty } (p-c) Q-\beta _2(Q-q_1-q_2) dF_2(E_2) \end{aligned}$$
(17)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1}&= -\alpha _1+\int _{E_1=q_1}^{\infty }\int _{E_2=0}^{q_2}\beta _1dF_2(E_2) dF_1(E_1)\nonumber \\&\quad +\int _{E_2=q_2}^{Q-q_1}\int _{E_1=q_1}^{\infty }\beta _1 dF_1(E_1) dF_2(E_2)\nonumber \\&\quad + \int _{E_1=q_1}^{\infty }\int _{E_2=Q-q_1}^{\infty } \beta _2 dF_2(E_2) dF_1(E_1) \end{aligned}$$
(18)
$$\begin{aligned}&\frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1}\nonumber \\&\quad = -\alpha _1+\int _{E_1=q_1}^{\infty }\left( \int _{E_2=0}^{Q-q_1}\beta _1dF_2(E_2) + \int _{E_2=Q-q_1}^{\infty } \beta _2 dF_2(E_2)\right) dF_1(E_1)\nonumber \\ \end{aligned}$$
(19)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_1} = -\alpha _1+\overline{F_1}(q_1)\left( \beta _1 F_2(Q-q_1)+ \beta _2 \overline{F_2}(Q-q_1)\right) \end{aligned}$$
(20)

Thus, (11) becomes \(-\alpha _1+\overline{F_1}(q_1)(\beta _1 F_2(Q-q_1)+ \beta _2 \overline{F_2}(Q-q_1))-\lambda =0\), i.e., \( q_1^D({\lambda })=F_1^{-1}(1-\frac{\alpha _1+\lambda }{(\beta _1-\beta _2) \cdot F_2(Q-q_1^D({\lambda }))+\beta _2})\).

Also, \(\mathcal {L}^2_{q_1q_2}\equiv \frac{\partial ^2 \mathcal {L}(q_1, q_2; \lambda )}{\partial q_1 \partial q_2}=0\) and \(\mathcal {L}^2_{q_1^2}\equiv \frac{\partial ^2 \mathcal {L}(q_1, q_2; \lambda )}{\partial q_1^2}\) \(=-f_1(q_1)(\beta _1 F_2(Q-q_1)+ \beta _2 \overline{F_2}(Q-q_1))-\overline{F_1}(q_1)\cdot f_2(Q-q_1) \cdot (\beta _1-\beta _2)<0.\)

$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_2}&= -\alpha _2+f_2(q_2) \int _{E_1=0}^{q_1} (p-c)(E_1+q_2) dF_1(E_1) \nonumber \\&\quad + f_2(q_2)\int _{E_1=q_1}^{Q-q_2}(p-c)\cdot (E_1+q_2)-\beta _1(E_1-q_1) dF_1(E_1)\nonumber \\&\quad + f_2(q_2)\int _{E_1=Q-q_2}^{\infty }(p-c)\cdot Q-\beta _1(Q-q_1-q_2) dF_1(E_1) \nonumber \\&\quad + \int _{E_1=0}^{q_1} \left( \int _{E_2=Q-E_1}^{\infty } \beta _2 dF_2(E_2) \right) dF_1(E_1)\nonumber \\&\quad + \int _{E_1=0}^{q_1}\left( \int _{E_2=q_2}^{Q-E_1} \beta _2 dF_2(E_2) - f_2(q_2) \cdot (p-c)\cdot (E_1+q_2)\right) dF_1(E_1)\nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\left( \int _{E_1=q_1}^{Q-E_2} \beta _2 dF_1(E_1) \right) dF_2(E_2)\nonumber \\&\quad - f_2(q_2)\cdot \int _{E_1=q_1}^{Q-q_2} (p-c)\cdot (E_1+q_2)-\beta _1(E_1-q_1) dF_1(E_1)\nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\left( \int _{E_1=Q-E_2}^{\infty }\beta _2 dF_1(E_1) \right) dF_2(E_2) \nonumber \\&\quad - f_2(q_2)\cdot \int _{E_1=Q-q_2}^{\infty } (p-c)Q-\beta _1(Q-q_1-q_2) dF_1(E_1)\nonumber \\&\quad + \int _{E_1=q_1}^{\infty }\left( \int _{E_2=Q-q_1}^{\infty } \beta _2 dF_2(E_2)\right) dF_1(E_1) \end{aligned}$$
(21)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_2}&= -\alpha _2+\int _{E_1=0}^{q_1}\int _{E_2=q_2}^{Q-E_1} \beta _2 dF_2(E_2) dF_1(E_1)\nonumber \\ {}&\quad +\int _{E_1=0}^{q_1}\int _{E_2=Q-E_1}^{\infty } \beta _2 dF_2(E_2) dF_1(E_1)\nonumber \\&\quad + \int _{E_2=q_2}^{Q-q_1}\int _{E_1=q_1}^{Q-E_2} \beta _2 dF_1(E_1) dF_2(E_2)\nonumber \\&\quad +\int _{E_2=q_2}^{Q-q_1}\int _{E_1=Q-E_2}^{\infty }\beta _2 dF_1(E_1) dF_2(E_2) \nonumber \\&\quad + \int _{E_1=q_1}^{\infty }\int _{E_2=Q-q_1}^{\infty } \beta _2 dF_2(E_2)dF_1(E_1) \end{aligned}$$
(22)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1,q_2 | p)}{\partial q_2}&= -\alpha _2+\int _{E_1=0}^{q_1}\int _{E_2=q_2}^{\infty } \beta _2 dF_2(E_2) dF_1(E_1)\nonumber \\&\quad +\int _{E_1=q_1}^{\infty }\int _{E_2=q_2}^{\infty } \beta _2 dF_2(E_2)dF_1(E_1)\nonumber \\&= -\alpha _2+\beta _2 \overline{F_2}(q_2) \end{aligned}$$
(23)

Thus, (12) becomes \(-\alpha _2+\beta _2 \overline{F_2}(q_2)-\lambda =0\), i.e., \(q_2^D(\lambda )=F_2^{-1}(1-\frac{\alpha _2+\lambda }{\beta _2})\).

Also, \(\mathcal {L}^2_{q_2 q_1}\equiv \frac{\partial ^2 \mathcal {L}(q_1, q_2; \lambda )}{\partial q_2 \partial q_1}=0\) and \(\mathcal {L}^2_{q_2^2}\equiv \frac{\partial ^2 \mathcal {L}(q_1, q_2; \lambda )}{\partial q_2^2}=\frac{\partial ^2 E\Pi ^D(q_1,q_2 | p)}{\partial q_2^2}=-f_2(q_2)\cdot \beta _2 <0.\)

We first compute \(Q^c\) as the solution for \(Q\) in \(q_1^D(0)+q_2^D(0)=Q\), i.e.,

$$\begin{aligned} F_1^{-1}\left( 1-\frac{\alpha _1}{(\beta _1-\beta _2) \cdot F_2(Q^c-q_1^D(0))+\beta _2}\right) + F_2^{-1}\left( 1-\frac{\alpha _2}{\beta _2}\right) =Q^c. \end{aligned}$$

To find the optimal solution, we consider two cases.

Case 1: \(Q\ge Q^c\), then \(q_1^D(0)+q_2^D(0) \le Q\) is satisfied with \(\lambda =0\). The optimal contract amounts solve the following equations: \(F_1(q_1^D)=1-\frac{\alpha _1}{(\beta _1-\beta _2) \cdot F_2(Q-q_1^D)+\beta _2}\) and \(F_2(q_2^D)=1-\frac{\alpha _2}{\beta _2}\).

Case 2: \(Q<Q^c\), \(q_1^D+q_2^D\le Q\) is violated. We thus need to solve for \(\lambda \) using \(q_1^D(\lambda )+q_2^D(\lambda )=Q\). Because \(\mathcal {L}^2_{q_1^2}<0\) and \(\mathcal {L}^2_{q_1^2}\mathcal {L}^2_{q_2^2}-\mathcal {L}^2_{q_1 q_2}\mathcal {L}^2_{q_2 q_1}>0\), \(\mathcal {L}\) is concave. Thus, the optimal solution satisfies all KKT conditions and meets the second-order sufficient conditions as well. \(\square \)

Appendix B: Derivation of the results for the special case

Single-emitter case. First, we compute \(q_i^*\).

$$\begin{aligned} \overline{F_i}(q_i^*)=e^{-\gamma q_i^*}=\frac{\alpha _2}{\beta _2} \quad \Rightarrow q_i^*=\frac{1}{\gamma }\ln \left( \frac{\beta _i}{\alpha _i}\right) . \end{aligned}$$
(24)
$$\begin{aligned} \text {Equation }(2) \Rightarrow E\Pi (q_i^*|p_i)= & {} -K-\frac{\alpha _i}{\gamma } \ln (\rho )-\frac{\beta _i}{\gamma } \left( \frac{1}{\rho }-e^{-\gamma Q}\right) \nonumber \\&+\frac{p-c}{\gamma }(1-e^{-\gamma Q}), \end{aligned}$$
(25)
$$\begin{aligned}&\frac{t-p_i^S-(\mu -\delta )}{2\delta } \left( 1+\frac{1}{\gamma }(1-e^{-\gamma Q})\right) =\frac{1}{2\delta } E\Pi (q_i^*|p_i) \nonumber \\&\quad \Rightarrow p_i^S=\left( t-(\mu -\delta )+K+\frac{\alpha _i}{\gamma } \ln (\rho )+\frac{\beta _i}{\gamma } \left( \frac{1}{\rho }-e^{-\gamma Q}\right) +\frac{c}{\gamma }(1-e^{-\gamma Q})\right) \Bigg /\nonumber \\&\quad \qquad \qquad \quad \left( 1+\frac{1}{\gamma }(1-e^{-\gamma Q})\right) . \end{aligned}$$
(26)

Dual-emitter case. First, we compute \(q_1^D, q_2^D\), and \(E\Pi ^D(q_1^D, q_2^D|p)\).

$$\begin{aligned} \overline{F_2}(q_2)&=e^{-\gamma q_2}=\frac{\alpha _2}{\beta _2} \quad \Rightarrow q_2^D=\frac{1}{\gamma }\ln \left( \frac{\beta _2}{\alpha _2}\right) . \end{aligned}$$
(27)
$$\begin{aligned} \overline{F_1}(q_1)&=e^{-\gamma q_1}=\frac{\alpha _1}{(1-e^{-\gamma (Q-q_1)})(\beta _1-\beta _2)+\beta _2} \Rightarrow \nonumber \\ q_1^D&=\frac{1}{\gamma }\ln \left( \frac{\beta _1}{\alpha _1+e^{-\gamma Q}(\beta _1-\beta _2)}\right) . \end{aligned}$$
(28)
$$\begin{aligned} \text {Let }\overline{\rho }&=\frac{\beta _1}{\alpha _1+e^{-\gamma Q}(\beta _1-\beta _2)}, \nonumber \\ E\Pi ^D(q_1^D, q_2^D|p)&=-K-\frac{\alpha _1}{\gamma } \ln (\overline{\rho })-\frac{\alpha _2}{\gamma } \ln (\rho )\nonumber \\&\quad +(p-c)\left( \frac{2}{\gamma }(1-e^{-\gamma Q})-Q e^{-\gamma Q}\right) \nonumber \\&\quad - \beta _2 \left( \frac{1}{\gamma }\left( \frac{1}{\rho }-e^{-\gamma Q}\right) -e^{-\gamma Q} q_1^D\right) \nonumber \\&\quad - \beta _1 \left( \frac{1}{\gamma }\left( \frac{1}{\overline{\rho }}-e^{-\gamma Q}\right) -e^{-\gamma Q} (Q-q_1^D)\right) . \end{aligned}$$
(29)

Next, we compute \(Q^c\) and \(\lambda \).

$$\begin{aligned} Q^c&= q_1^D+q_2^D=\frac{1}{\gamma }\ln \left( \frac{(\alpha _1+e^{-\gamma Q^c}(\beta _1-\beta _2))\alpha _2}{\beta _1\beta _2}\right) \nonumber \\&\Rightarrow Q^c=\frac{1}{\gamma }\ln \left( \frac{\beta _1\beta _2-(\beta _1-\beta _2)\alpha _2}{\alpha _1\alpha _2}\right) .\end{aligned}$$
(30)
$$\begin{aligned} e^{-\gamma q_1}&=\frac{\alpha _1+\lambda }{(1-e^{-\gamma (Q-q_1)})(\beta _1-\beta _2)+\beta _2}\nonumber \\&\Rightarrow q_1^D(\lambda )=\frac{1}{\gamma }\ln \left( \frac{\beta _1}{\alpha _1+\lambda +e^{-\gamma Q}(\beta _1-\beta _2)}\right) , \end{aligned}$$
(31)
$$\begin{aligned} e^{-\gamma q_2}&=\frac{\alpha _2+\lambda }{\beta _2} \quad \Rightarrow q_2^D(\lambda )=\frac{1}{\gamma }\ln \left( \frac{\beta _2}{\alpha _2+\lambda }\right) . \end{aligned}$$
(32)
$$\begin{aligned} q_1^D(\lambda )+q_2^D(\lambda )&=Q \Rightarrow (\alpha _1+\lambda +(\beta _1-\beta _2)e^{-\gamma Q})(\alpha _2+\lambda ) -\beta _1\beta _2e^{-\gamma Q}=0 \nonumber \\&\Rightarrow \lambda =\frac{1}{2}\sqrt{(\alpha _1-\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2))^2+4\beta _1\beta _2e^{-\gamma Q}} \nonumber \\&\quad -\frac{1}{2}(\alpha _1+\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2)). \end{aligned}$$
(33)

We also need to show that \(\lambda >0\) as long as \(\beta _2>\alpha _1\), and \(\frac{\partial \lambda }{\partial Q}<0\). \(Q<Q^c \Rightarrow e^{-\gamma Q}>e^{-\gamma Q^c}=\frac{\beta _1\beta _2-(\beta _1-\beta _2)\alpha _2}{\alpha _1\alpha _2}\). Thus,

$$\begin{aligned}&(\alpha _1-\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2))^2+4\beta _1\beta _2e^{-\gamma Q}-(\alpha _1+\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2))^2\\&\quad = 4(\beta _1\beta _2e^{-\gamma Q}-\alpha _1\alpha _2-\alpha _2e^{-\gamma Q}(\beta _1-\beta _2))\\&\quad =4(e^{-\gamma Q}\beta _1(\beta _2-\alpha _2)+\alpha _2(e^{-\gamma Q}\beta _2-\alpha _1))\\&\quad \displaystyle >e^{-\gamma Q}\beta _1(\beta _2-\alpha _2)+\alpha _2\left( \frac{\beta _1\beta _2-(\beta _1-\beta _2)\alpha _2}{\alpha _1\alpha _2}\beta _2-\alpha _1\right) \\&\quad \displaystyle =e^{-\gamma Q}\beta _1(\beta _2-\alpha _2)+\frac{1}{\alpha _1}(\beta _1\beta _2(\beta _2-\alpha _2)+\alpha _2(\beta _2^2-\alpha _1^2))>0\quad \mathrm{if} \quad \beta _2>\alpha _1. \end{aligned}$$

To verify \(\frac{\partial \lambda }{\partial Q}<0\), first showing \(D(Q) = S(Q)-U(Q)<0\), where \(S(Q)\equiv (\alpha _1-\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2))^2+4\beta _1\beta _2e^{-\gamma Q}\) and \(U(Q) \equiv (\alpha _1-\alpha _2+e^{-\gamma Q}(\beta _1+\beta _2))^2\).

$$\begin{aligned} D(Q)&=4e^{-\gamma Q}\beta _2(\beta _1-e^{-\gamma Q}\beta _1-(\alpha _1-\alpha _2))\nonumber \\&<4e^{-\gamma Q}\beta _2 \left( \beta _1-\frac{\beta _1\beta _2-(\beta _1-\beta _2)\alpha _2}{\alpha _1\alpha _2}\beta _1-(\alpha _1-\alpha _2)\right) \nonumber \\&=4e^{-\gamma Q}\frac{\beta _2}{\alpha _1\alpha _2}(\beta _1\alpha _2(\alpha _1-\beta _2)+\beta _1^2(\alpha _2-\beta _2)+\alpha _1\alpha _2(\alpha _2-\alpha _1))<0. \end{aligned}$$
(34)
$$\begin{aligned} \frac{\partial \lambda }{\partial Q}&= \frac{1}{4}(S(Q))^{-\frac{1}{2}}\cdot \frac{\partial S(Q)}{\partial Q}+\frac{1}{2}\gamma e^{-\gamma Q}(\beta _1-\beta _2) \nonumber \\&=\frac{-1}{2}\gamma e^{-\gamma Q}(S(Q))^{-\frac{1}{2}}((\alpha _1-\alpha _2+e^{-\gamma Q}(\beta _1-\beta _2))(\beta _1-\beta _2)\nonumber \\&\quad +2\beta _1\beta _2 -(\beta _1-\beta _2)(S(Q))^{\frac{1}{2}}) \nonumber \\&<\frac{-1}{2}\gamma e^{-\gamma Q}(S(Q))^{-\frac{1}{2}}(e^{-\gamma Q}(\beta _1-\beta _2)^2+2\beta _1\beta _2 -e^{-\gamma Q}(\beta _1-\beta _2)(\beta _1\!+\!\beta _2)) \nonumber \\&=-\gamma e^{-\gamma Q}(S(Q))^{-\frac{1}{2}}\beta _2((1-e^{-\gamma Q})\beta _1+e^{-\gamma Q}\beta _2)<0. \end{aligned}$$
(35)

Last, we compute the optimal price \(p^D\) by solving for it from Eq. (8):

$$\begin{aligned} E\Pi ^D-E\Pi _1^S-E\Pi _2^S-\frac{1}{\gamma }(1-e^{-\gamma Q})&=K+\frac{\alpha _1}{\gamma }(\ln (\rho )-\ln (\overline{\rho }))\nonumber \\&\quad + \frac{\beta _1}{\gamma }\left( \frac{1}{\rho }-\frac{1}{\overline{\rho }}\right) -(p-c-\beta _1)Qe^{-\gamma Q}\nonumber \\&\quad - \frac{e^{-\gamma Q}}{\gamma }(\beta _1-\beta _2)\ln (\overline{\rho }) \nonumber \\&\quad - \frac{1}{\gamma }\left( 1-e^{-\gamma Q}\right) \equiv T_1-(p-c)Qe^{-\gamma Q} \end{aligned}$$
(36)
$$\begin{aligned} E\Pi _1^S+E\Pi _2^S&=(p-c)\frac{2}{\gamma }(1-e^{-\gamma Q})-2K-(\alpha _1+\alpha _2)\frac{1}{\gamma }\ln (\rho )\nonumber \\&\quad - (\beta _1+\beta _2)\frac{1}{\gamma }\left( \frac{1}{\rho }-e^{-\gamma Q}\right) \equiv (p-c)\frac{2}{\gamma }(1-e^{-\gamma Q})-T2\quad \end{aligned}$$
(37)
$$\begin{aligned}&G(t-p)^2 (Qe^{-\gamma Q})+2G(t-p)\left( E\Pi ^D-E\Pi _1^S-E\Pi _2^S-\frac{1}{\gamma }(1-e^{-\gamma Q})\right) \nonumber \\&\quad + E\Pi _1^S+E\Pi _2^S=0. \end{aligned}$$
(38)

Let \(\overline{t}=t-c-\mu +\delta ,\)

$$\begin{aligned}&\left( \frac{\overline{t}-(p-c)}{2\delta }\right) ^2 (Qe^{-\gamma Q})+\frac{(\overline{t}-(p-c))}{\delta }(T_1-(p-c)Qe^{-\gamma Q}) \nonumber \\&\quad + (p-c)\frac{2}{\gamma } (1-e^{-\gamma Q})-T_2=0. \end{aligned}$$
(39)
$$\begin{aligned} p^D&=c+\frac{-B+\sqrt{B^2-4AC}}{2A}, \text { where } A=Qe^{-\gamma Q}\left( \frac{1}{4\delta ^2}+\frac{1}{\delta }\right) , \nonumber \\ B&=\frac{2}{\gamma }(1-e^{-\gamma Q})-\frac{2\overline{t}}{\delta }Qe^{-\gamma Q}-\frac{T_1}{\delta }, \nonumber \\ \text { and } C&=\frac{\overline{t}^2}{4\delta ^2}Qe^{-\gamma Q}+\frac{\overline{t}}{\delta }T_1-T_2. \end{aligned}$$
(40)

As \(Q\) increases, \(T_1\) increases while \(T_2\) decreases. Thus, both \(A\) and \(C\) increase, and \(B\) decreases. As a result, \(p^D\) decreases in \(Q\).

Appendix C: Proof of Proposition 2

We can use Fig. 1 to construct the derivative as the sum of three integrals:

$$\begin{aligned} \frac{\partial E\Pi ^D(q_1^D,q_2^D | p)}{\partial p}&= \int _{E_1=0}^{Q}\int _{E_2=0}^{Q-E_1}(E_1+E_2)dF_2(E_2)dF_1(E_1)\nonumber \\&\quad +\int _{E_1=0}^{Q}\int _{E_2=Q-E_1}^{\infty }QdF_2(E_2)dF_1(E_1)\nonumber \\&\quad + \int _{E_1=Q}^{\infty }\int _{E_2=0}^{\infty }QdF_2(E_2)dF_1(E_1) \end{aligned}$$
(41)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1^D,q_2^D | p)}{\partial p}&= \int _{E_1=0}^{Q}E_1 F_2(Q-E_1)dF_1(E_1)\nonumber \\ {}&\quad + \int _{E_1=0}^{Q}\int _{E_2=0}^{Q-E_1}E_2dF_2(E_2)dF_1(E_1)\nonumber \\&\quad + Q\int _{E_1=0}^Q\overline{F_2}(Q-E_1)dF_1(E_1)+Q\overline{F_1}(Q) \end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1^D,q_2^D | p)}{\partial p}&= \int _{E_1=0}^Q \left( E_1 F_2(Q-E_1)+Q\overline{F_2}(Q-E_1)\right. \nonumber \\ {}&\quad \left. +\int _{E_2=0}^{Q-E_1}E_2dF_2(E_2)\right) dF_1(E_1)+Q(1-F_1(Q)) \end{aligned}$$
(43)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1^D,q_2^D | p)}{\partial p}&= \int _{E_1=0}^Q \bigg (E_1 F_2(Q-E_1)+Q\overline{F_2}(Q-E_1)+(Q-E_1)F_2(Q-E_1)\nonumber \\ {}&\quad -\int _{E_2=0}^{Q-E_1}F_2(E_2)dE_2\bigg )dF_1(E_1)+ Q-QF_1(Q) \end{aligned}$$
(44)
$$\begin{aligned} \frac{\partial E\Pi ^D(q_1^D,q_2^D | p)}{\partial p}= & {} Q-QF_1(Q)+QF_1(Q)\nonumber \\&-\int _{E_1=0}^{Q}\left( \int _{E_2=0}^{Q-E_1}F_2(E_2)dE_2\right) dF_1(E_1). \end{aligned}$$
(45)

Using integration by parts and Leibniz’ rule on the double integral leads to

$$\begin{aligned}&=Q-\left( F_1(E_1)\int _{E_2=0}^{Q-E_1}F_2(E_2)dE_2\right) \bigg |_{E_1=0}^Q+\int _{E_1=0}^QF_1(E_1)F_2(Q-E_1)dE_1\end{aligned}$$
(46)
$$\begin{aligned}&= Q-\int _{E_1=0}^Q F_1(E_1)F_2(Q-E_1)dE_1. \end{aligned}$$
(47)

Also, \(\frac{\partial ^2 E\Pi ^D(q_1^D,q_2^D | p)}{\partial p^2}=0.\) We can write down the first-order condition on the optimal price:

$$\begin{aligned} \frac{\partial E\Pi ^D (q_1^D, q_2^D, p)}{\partial p}&=2G(t-p) \cdot (-g(t-p)) \cdot E\Pi ^D(q_1^D, q_2^D|p) \nonumber \\&\quad + G^{2}(t-p) \cdot \frac{\partial E\Pi ^D (q_1^D, q_2^D|p)}{\partial p}\nonumber \\&\quad + (1-2G(t-p)) \cdot (-g(t-p)) \cdot (E\Pi _1^S(q_1^S| p)+E\Pi _2^S(q_2^S| p))\nonumber \\&\quad + G(t-p) \cdot \overline{G}(t-p) \cdot \left( \frac{\partial E\Pi _1^S(q_1^S| p)}{\partial p}+\frac{\partial E\Pi _2^S(q_2^S| p)}{\partial p} \right) \end{aligned}$$
(48)
$$\begin{aligned} \frac{\partial E\Pi ^D (q_1^D, q_2^D, p)}{\partial p}&= -2 G(t-p) \cdot g(t-p) \cdot E\Pi ^D(q_1^D, q_2^D|p) \nonumber \\&\quad + G^{2}(t-p) \cdot \left( \int _{E_1=0}^{Q}(1-F_1(E_1) \cdot F_2(Q-E_1)) dE_1\right) \nonumber \\&\quad +(2G(t-p)-1) \cdot g(t-p) \cdot (E\Pi _1^S(q_1^S| p)+E\Pi _2^S(q_2^S| p))\nonumber \\&\quad + G(t-p) \cdot \overline{G}(t-p) \cdot \bigg (\int _{E_1=0}^{Q}\overline{F_1}(E_1) dE_1\nonumber \\ {}&\quad +\int _{E_2=0}^{Q}\overline{F_2}(E_2) dE_2\bigg )=0, \end{aligned}$$
(49)

which gives the value of the optimal price \(p^D\). The second-order sufficient condition for \(p^D\) is:

$$\begin{aligned}&\frac{\partial ^2 E\Pi ^D(q_1^D, q_2^D,p)]}{\partial p^2} \nonumber \\&\quad = 2[g^{'}(t-p) \cdot G(t-p) +g^2(t-p)] \cdot E\Pi ^D(q_1^D, q_2^D|p)\nonumber \\&\qquad - 2g(t-p) \cdot G(t-p) \cdot \frac{\partial E\Pi ^D(q_1^D, q_2^D|p)}{\partial p} \nonumber \\&\qquad - [(g^{'}(t-p)\cdot (2G(t-p)-1)+2g^2(t-p)] \cdot (E\Pi _1^S(q_1^S| p)+E\Pi _2^S(q_2^S| p))\nonumber \\&\qquad + [g(t-p)\cdot (2G(t-p)-1)] \cdot \left( \frac{\partial E\Pi _1^S(q_1^S| p)}{\partial p} +\frac{\partial E\Pi _2^S(q_2^S| p)}{\partial p} \right) \nonumber \\&\qquad + [-g(t-p) \cdot (1-G(t-p))+G(t-p)\cdot g(t-p)] \cdot \bigg (\frac{\partial E\Pi _1^S(q_1^S| p)}{\partial p}+\frac{\partial E\Pi _2^S(q_2^S| p)}{\partial p} \bigg ). \end{aligned}$$
(50)

Thus, \(p^D\) must satisfy the second-order condition:

$$\begin{aligned}&2[g^{'}(t-p^D) \cdot G(t-p^D) +g^2(t-p^D)] \cdot E\Pi ^D(q_1^D, q_2^D|p^D) \nonumber \\&\quad - 2g(t-p^D) \cdot G(t-p^D) \cdot \left( \int _{E_1=0}^{Q}(1-F_1(E_1) \cdot F_2(Q-E_1)) dE_1\right) \nonumber \\&\quad - \left[ (g^{'}(t-p^D)\cdot (2G(t-p^D)-1)+2g^2(t-p^D)\right] \cdot \left( E\Pi _1^S(q_1^S| p^D)+E\Pi _2^S(q_2^S| p^D)\right) \nonumber \\&\quad + \left[ 4g(t-p^D)\cdot G(t-p^D)-2g(t-p^D)\right] \cdot \left( \int _{E_1=0}^{Q}\overline{F_1}(E_1) dE_1+\int _{E_2=0}^{Q}\overline{F_2}(E_2) dE_2\right) <0. \end{aligned}$$
(51)

Additionally, we need to impose the following conditions to ensure the expected profit of the storage operator is non-negative:

$$\begin{aligned} E\Pi ^D\left( q_1^D, q_2^D|p^D\right) , \, E\Pi _1^S\left( q_1^S| p^D\right) , \, \text{ and } \, E\Pi _2^S\left( q_2^S| p^D\right) \, \ge 0. \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singham, D.I., Cai, W. & White, J.A. Optimal carbon capture and storage contracts using historical CO\(_2\) emissions levels. Energy Syst 6, 331–360 (2015). https://doi.org/10.1007/s12667-015-0142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-015-0142-z

Keywords

Navigation