Skip to main content
Log in

Methodologies in power systems fault detection and diagnosis

  • Review
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Power systems frequently experience variations in their operation, which are mostly manifested as transmission line faults. Over the past decade, various techniques of fault diagnosis have been developed to ensure reliable and stable operation of power systems. This paper reviews the current literature on advanced application of fault diagnosis in power systems. Application of different fault diagnosis schemes is presented, with emphasis on reliable fault detection and classification of power system faults. The motivation behind applications of emerging process history, or pattern recognition, techniques in power system fault diagnosis has been reviewed. An extensive review of advanced mathematical techniques, in pattern recognition methods, involving wavelet transform, artificial neural networks and support vector machines has been presented. The paper also introduces a novel unsupervised technique of quarter-sphere support vector machine for power system fault detection and classification and reviews its application as future research in the developing area of fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karthikeyan, M., Malathi, V.: Wavelet-support vector machine approach for classification of power quality disturbances. Int. J. Recent Trends Eng. 1(3) (2009)

  2. Kalyani, S., Swarup, K.: Binary svm approach for security assessment and classification in power systems. In: India Conference (INDICON), Annual IEEE, pp. 1–4. IEEE Press, New York (2009)

  3. Koval, D.: Power system disturbance patterns. IEEE Trans. Ind. Appl. 26(3), 556–562 (1990)

    Article  Google Scholar 

  4. Santoso, S., Powers, E., Grady, W., Hofmann, P.: Power quality assessment via wavelet transform analysis. IEEE Trans. Power Deliv. 11(2), 924–930 (1996)

    Article  Google Scholar 

  5. Stones, J., Collinson, A.: Power quality. Power Eng. J. 15(2), 58–64 (2001)

    Article  Google Scholar 

  6. Andersson, G.: Modelling and analysis of electric power systems. EEH-Power Systems Laboratory, ETH, Zürich (2004)

  7. Tleis, N.: Power systems modelling and fault analysis: theory and practice. Newnes (2007)

  8. Elhaffar, A.: Power transmission line fault location based on current traveling waves. Praca doktorska, Department of Electrical Engineering, Helsinki University of Technology, Helsinki (2008)

  9. Bunnoon, P.: Fault detection approaches to power system: state-of-the-art article reviews for searching a new approach in the future. IJECE 3(4), 553–560 (2013)

    Article  Google Scholar 

  10. Singh, M., Panigrahi, B., Maheshwari, R.: Transmission line fault detection and classification. In: International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 15–22. IEEE Press, New York (2011)

  11. Farhat, I.: Fault detection, classification and location in transmission line systems using neural networks. Ph.D. dissertation, Concordia University (2003)

  12. Ayyagari, S.: Artificial neural network based fault location for transmission line (2011)

  13. Jiang, J., Yang, J., Lin, Y., Liu, C., Ma, J.: An adaptive pmu based fault detection/location technique for transmission lines. I. Theory and algorithms. IEEE Trans. Power Deliv. 15(2), 486–493 (2000)

    Article  Google Scholar 

  14. Xiangjun, Z., Yuanyuan, W., Yao, X.: Faults detection for power systems, pp. 71–118 (2010)

  15. Sanaye-Pasand, M., Khorashadi-Zadeh, H.: Transmission line fault detection and phase selection using ann. In: International Conference on Power Systems Transients, New Orleans (2003)

  16. Gu, I., Styvaktakis, E.: Bridge the gap: signal processing for power quality applications. Electr. Power Syst. Res. 66(1), 83–96 (2003)

    Article  Google Scholar 

  17. Das, D., Singh, N., Sinha, A.: A comparison of fourier transform and wavelet transform methods for detection and classification of faults on transmission lines. In: 2006 IEEE Power India Conference, p. 7. IEEE Press, New York (2006)

  18. Abdollahi, A., Seyedtabaii, S.: Comparison of fourier and wavelet transform methods for transmission line fault classification. In: 4th International Power Engineering and Optimization Conference (PEOCO), pp. 579–584. IEEE Press, New York (2010)

  19. Li, K., Lai, L., David, A.: Application of artificial neural network in fault location technique. In: Proceedings. DRPT 2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 226–231. IEEE Press, New York (2000)

  20. Ekici, S., Yildirim, S., Poyraz, M.: Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition. Expert Syst. Appl. 34(4), 2937–2944 (2008)

    Article  Google Scholar 

  21. Isermann, R.: Supervision, fault-detection and fault-diagnosis methods-an introduction. Control Eng. Pract. 5(5), 639–652 (1997)

    Article  Google Scholar 

  22. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  23. Katipamula, S., Brambley, M.: Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, part I. HVAC&R Res. 11(1), 3–25 (2005)

    Article  Google Scholar 

  24. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003)

    Article  Google Scholar 

  25. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis: Part III: Process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  26. Sorsa, T., Koivo, H., Koivisto, H.: Neural networks in process fault diagnosis. IEEE Trans. Syst. Man Cybern. 21(4), 815–825 (1991)

    Article  Google Scholar 

  27. Frank, P., Köppen-Seliger, B.: New developments using AI in fault diagnosis. Eng. Appl. Artif. Intell. 10(1), 3–14 (1997)

    Article  Google Scholar 

  28. Wang, C.: Methodologies and algorithms for fault locators in modern power systems. Ph.D. dissertation, University of the West of England, UK (2002)

  29. Swarup, K., Chandrasekharaiah, H.: Fault detection and diagnosis of power systems using artificial neural networks. In: Proceedings of the First International Forum on Applications of Neural Networks to Power Systems, pp. 102–106. IEEE Press, New York (1991)

  30. Vazquez, E., Altuve, H., Chacon, O.: Neural network approach to fault detection in electric power systems. In: IEEE International Conference on Neural Networks, vol. 4, pp. 2090–2095. IEEE Press, New York (1996)

  31. Rodrigues, M., Souza, J., Schilling, M., Do Coutto Filho, M.: Fault diagnosis in electrical power systems using artificial neural networks. In: PowerTech Budapest 99: International Conference on Electric Power Engineering, p. 130. IEEE Press, New York (1999)

  32. Stergiopoulos, K., Pipe, A., Nouri, H.: Intelligent control architectures for fault diagnosis in electrical power distribution networks. In: IEEE International Symposium on Intelligent Control, pp. 569–573. IEEE Press, New York (2003)

  33. Uyar, M., Yildirim, S., Gencoglu, M.: An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electr. Power Syst. Res. 78(10), 1747–1755 (2008)

    Article  Google Scholar 

  34. Yusuff, A., Jimoh, A., Munda, J.: Determinant-based feature extraction for fault detection and classification for power transmission lines. Gener. Transm. Distrib. IET 5(12), 1259–1267 (2011)

    Article  Google Scholar 

  35. Phadke, A., Thorp, J.: Computer Relaying for Power Systems. Wiley, New York (1992)

  36. Bollen, M., Gu, I., Axelberg, P., Styvaktakis, E.: Classification of underlying causes of power quality disturbances: deterministic versus statistical methods. EURASIP J. Adv. Signal Process. (2007)

  37. Huang, S., Hsieh, C.: Feasibility of fractal-based methods for visualization of power system disturbances. Int. J. Electr. Power Energy Syst. 23(1), 31–36 (2001)

    Article  Google Scholar 

  38. Dash, P., Panigrahi, B., Panda, G.: Power quality analysis using s-transform. IEEE Trans. Power Deliv. 18(2), 406–411 (2003)

    Article  Google Scholar 

  39. Wang, M., Ochenkowski, P., Mamishev, A.: Classification of power quality disturbances using time-frequency ambiguity plane and neural networks. In: Power Engineering Society Summer Meeting, vol. 2, pp. 1246–1251. IEEE Press, New York (2001)

  40. Chowdhury, F., Christensen, J., Aravena, J.: Power system fault detection and state estimation using kalman filter with hypothesis testing. IEEE Trans. Power Deliv. 6(3), 1025–1030 (1991)

    Article  Google Scholar 

  41. Heydt, G., Fjeld, P., Liu, C., Pierce, D., Tu, L., Hensley, G.: Applications of the windowed FFT to electric power quality assessment. IEEE Trans. Power Deliv. 14(4), 1411–1416 (1999)

    Article  Google Scholar 

  42. Schegan, C.: A hardware/software platform for fault detection and identification in electric power distribution systems for testing various detection schemes. Ph.D. dissertation, Drexel University (2008)

  43. Falifla, A., AbuBeker, H.: On line fault detection for transmission line using power system stabilizer signals. Ph.D. dissertation, Universiti Teknologi Malaysia, Faculty of Electrical Engineering (2007)

  44. Mao, P., Aggarwal, R.: A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network. IEEE Trans. Power Deliv. 16(4), 654–660 (2001)

    Article  Google Scholar 

  45. Santoso, S., Powers, E., Grady, W., Parsons, A.: Power quality disturbance waveform recognition using wavelet-based neural classifier. I. Theoretical foundation. IEEE Trans. Power Deliv. 15(1), 222–228 (2000)

    Article  Google Scholar 

  46. Santoso, S., Powers, E., Grady, W., Parsons, A.: Power quality disturbance waveform recognition using wavelet-based neural classifier. II. Application. IEEE Trans. Power Deliv. 15(1), 229–235 (2000)

    Article  Google Scholar 

  47. Bhowmik, P., Purkait, P., Bhattacharya, K.: A novel wavelet assisted neural network for transmission line fault analysis. In: Annual IEEE India Conference (INDICON), vol. 1, pp. 223–228. IEEE Press, New York (2008)

  48. Chun-Lin, L.: A tutorial of the wavelet transform (2010)

  49. Borras, D., Castilla, M., Moreno, N., Montano, J.: Wavelet and neural structure: a new tool for diagnostic of power system disturbances. IEEE Trans. Ind. Appl. 37(1), 184–190 (2001)

    Article  Google Scholar 

  50. Chanda, D., Kishore, N., Sinha, A.: Application of wavelet multiresolution analysis for classification of faults on transmission lines. In: TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, vol. 4, pp. 1464–1469. IEEE Press, New York (2003)

  51. Kale, V., Bhide, S., Bedekar, P., Mohan, G.: Detection and classification of faults on parallel transmission lines using wavelet transform and neural network. Int. J. Electr. Electron. Eng. 1(4), 364–368 (2008)

    Google Scholar 

  52. Parikh, U., Das, B., Maheshwari, R.P.: Combined wavelet-svm technique for fault zone detection in a series compensated transmission line. IEEE Trans. Power Deliv. 23(4), 1789–1794 (2008)

    Article  Google Scholar 

  53. Megahed, A., Moussa, A., Bayoumy, A.: Usage of wavelet transform in the protection of series-compensated transmission lines. IEEE Trans. Power Deliv. 21(3), 1213–1221 (2006)

    Article  Google Scholar 

  54. Zhang, N., Kezunovic, M.: Transmission line boundary protection using wavelet transform and neural network. IEEE Trans. Power Deliv. 22(2), 859–869 (2007)

    Article  MATH  Google Scholar 

  55. Mahmood, F., Qureshi, S., Kamran, M.: Application of wavelet multi-resolution analysis & perceptron neural networks for classification of transients on transmission line. In: Australasian Universities Power Engineering Conference (AUPEC’08), pp. 1–5. IEEE Press, New York (2008)

  56. Gayathri, K., Kumarappan, N.: Comparative study of fault identification and classification on ehv lines using discrete wavelet transform and fourier transform based ann. Int. J. Electr. Comput. Syst. Eng. 2(2), 125–136 (2008)

    Google Scholar 

  57. Gaouda, A., Kanoun, S., Salama, M., Chikhani, A.: Pattern recognition applications for power system disturbance classification. IEEE Trans. Power Deliv. 17(3), 677–683 (2002)

    Article  Google Scholar 

  58. Huang, J., Hu, X., Geng, X.: An intelligent fault diagnosis method of high voltage circuit breaker based on improved emd energy entropy and multi-class support vector machine. Electr. Power Syst. Res. 81(2), 400–407 (2011)

    Article  Google Scholar 

  59. Janik, P., Lobos, T.: Automated classification of power-quality disturbances using SVM and RBF networks. IEEE Trans. Power Deliv. 21(3), 1663–1669 (2006)

    Article  Google Scholar 

  60. Saha, M., Rosolowski, E., Izykowski, J.: Artificial intelligent application to power system protection. Department of Electrical Engineering, University of Technology, Poland (1999)

  61. Cichocki, A., Unbehauen, R.: Neural networks for optimization and signal processing. Available online http://books.google.com.pk/books?id=Ba1QAAAAMAAJ. Wiley, New York (1993)

  62. Aggarwal, R., Song, Y.: Artificial neural networks in power systems. I. General introduction to neural computing. Power Eng. J. 11(3), 129–134 (1997)

    Article  Google Scholar 

  63. Haykin, S.: Neural Networks: a Comprehensive Foundation. Available Online http://books.google.com.pk/books?id=M5abQgAACAAJ. Prentice Hall International Editions Series. Prentice Hall (1999)

  64. Aggarwal, R., Song, Y.: Artificial neural networks in power systems. II. Types of artificial neural networks. Power Eng. J. 12(1), 41–47 (1998)

    Article  Google Scholar 

  65. Aggarwal, R., Song, Y.: Artificial neural networks in power systems. III. Examples of applications in power systems. Power Eng. J. 12(6), 279–287 (1998)

    Article  Google Scholar 

  66. Haque, M., Kashtiban, A.: Application of neural networks in power system: a review. Trans. Eng. Comput. Technol. 6 (2000)

  67. Geethanjali, M., Priya, K.: Combined wavelet transfoms and neural network (WNN) based fault detection and classification in transmission lines. In: INCACEC. International Conference on Control, Automation, Communication and Energy Conservation, pp. 1–7. IEEE Press, New York (2009)

  68. Koley, E., Jain, A., Thoke, A., Jain, A., Ghosh, S.: Detection and classification of faults on six phase transmission line using ANN. In: 2nd International Conference on Computer and Communication Technology (ICCCT), pp. 100–103. IEEE Press, New York (2011)

  69. Kasinathan, K.: Power system fault detection and classification by wavelet transforms and adaptive resonance theory neural networks (2007)

  70. Srinivas, H., Srinivasan, K., Umesh, K.: Application of artificial neural network and wavelet transform for vibration analysis of combined faults of unbalances and shaft bow (2010)

  71. Mahanty, R., Gupta, P.: Application of rbf neural network to fault classification and location in transmission lines. In: IEE Proceedings Generation, Transmission and Distribution, vol. 151, no. 2, pp. 201–212. IET, London (2004)

  72. Dash, P., Pradhan, A., Panda, G.: Application of minimal radial basis function neural network to distance protection. IEEE Trans. Power Deliv. 16(1), 68–74 (Jan 2001)

  73. Lin, W., Yang, C., Lin, J., Tsay, M.: A fault classification method by rbf neural network with ols learning procedure. In: PICA 2001. Innovative Computing for Power Electric Energy Meets the Market. 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications, pp. 118–121 (2001)

  74. Ekici, S., Yildirim, S., Poyraz, M.: A neural network based approach for transmission line faults (2007)

  75. Pradhan, A., Mohanty, S., Routray, A.: Neural fault classifier for transmission line protection-a modular approach. In: Power Engineering Society General Meeting, p. 5. IEEE Press, New York (2006)

  76. Wahab, N., Mohamed, A., Hussain, A.: Transient stability assessment of a power system using PNN and LS-SVM methods. J. Appl. Sci. 7(21), 3208–3216 (2007)

    Article  Google Scholar 

  77. Gaing, Z.: Wavelet-based neural network for power disturbance recognition and classification. IEEE Trans. Power Deliv. 19(4), 1560–1568 (2004)

    Article  Google Scholar 

  78. Bishop, C.: Pattern recognition and machine learning. Available online http://books.google.com.pk/books?id=kTNoQgAACAAJ. Information Science and Statistics, Springer (2006)

  79. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, New York (2001)

  80. Kecman, V.: Support vector machines-an introduction. Support vector machines: theory and applications, pp. 605–605 (2005)

  81. Abe, S.: Support vector machines for pattern classification. Springer, New York (2010)

  82. Steinwart, I., Christmann, A.: Support vector machines (information science & statistics). Recherche 67, 02 (2008)

    Google Scholar 

  83. Melgani, F., Bazi, Y.: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12(5), 667–677 (2008)

    Article  Google Scholar 

  84. Guler, I., Ubeyli, E.: Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 11(2), 117–126 (2007)

    Article  Google Scholar 

  85. Chunling, C., Tongyu, X., Zailin, P., Ye, Y.: Power quality disturbances classification based on multi-class classification SVM. In: 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), vol. 1, pp. 290–294. IEEE Press, New York (2009)

  86. Nguyen, X., Huang, L., Joseph, A.: Support vector machines, data reduction, and approximate kernel matrices. Mach. Learn. Knowl. Discov. Databases 137–153 (2008)

  87. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation, vol. 13, pp. 1443–1471. Available online http://portal.acm.org/citation.cfm?id=1119748.1119749 (2001)

  88. Yeung, D., Wang, D., Ng, W., Tsang, E., Wang, X.: Structured large margin machines: sensitive to data distributions. Mach. Learn. 68(2), 171–200 (2007)

    Article  Google Scholar 

  89. Scholkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  90. Herbrich, R.: Learning kernel classifiers: theory and algorithms. MIT Press, Cambridge (2002)

  91. Hofmann, T., Schölkopf, B., Smola, A.: Kernel methods in machine learning. Ann. Stat. 1171–1220 (2008)

  92. Huang, K., Yang, H., King, I., Lyu, M.: Learning large margin classifiers locally and globally. In: Proceedings of the twenty-first international conference on Machine learning, p. 51. ACM Press, New York (2004)

  93. Smola, A., Schölkopf, B.: Learning with kernels. Citeseer (1998)

  94. Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors. In: ESANN’99, pp. 251–256 (1999)

  95. Zhang, X., Gu, C., Lin, J.: Support vector machines for anomaly detection. In: The Sixth World Congress on Intelligent Control and Automation (WCICA), vol. 1, 2594–2598. IEEE Press, New York (2006)

  96. Gomez-Verdejo, V., Arenas-Garcia, J., Lazaro-Gredilla, M., Navia-Vazquez, A.: Adaptive one-class support vector machine. IEEE Trans. Signal Process. 59(6), 2975–2981 (June 2011)

  97. Rajasegarar, S., Leckie, C., Bezdek, J., Palaniswami, M.: Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks. IEEE Trans. Inf. Forensics Secur. 5(3), 518–533 (2010)

    Article  Google Scholar 

  98. Rajasegarar, S., Leckie, C., Palaniswami, M.: Cesvm: Centered hyperellipsoidal support vector machine based anomaly detection. In: ICC ’08. IEEE International Conference on Communications, pp. 1610–1614 (2008)

  99. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.: Quarter sphere based distributed anomaly detection in wireless sensor networks. In: ICC ’07. IEEE International Conference on Communications, pp. 3864–3869 (2007)

  100. Shahid, N., Naqvi, I.H., Qaisar, S.B.: Quarter-Sphere SVM: attribute and Spatio-Temporal correlations based outlier and event detection in wireless sensor networks. In: 2012 IEEE Wireless Communications and Networking Conference: Mobile and Wireless Networks (IEEE WCNC 2012 Track 3 Mobile and Wireless). France (2012)

  101. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Burlington (2006)

  102. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Computing Surveys, vol. 41, pp. 15:1–15:58. Available online http://doi.acm.org/10.1145/1541880.1541882 (2009)

  103. Aggarwal, C., Yu, P.: Outlier detection for high dimensional data. ACM Sigmod Rec. 30(2), 37–46 (2001)

    Article  Google Scholar 

  104. Aly, M.: Survey on multiclass classification methods. Neural Netw. 1–9 (2005)

  105. Mayoraz, E., Alpaydin, E.: Support vector machines for multi-class classification. Eng. Appl. Bioinspir. Artif. Neural Netw. 833–842 (1999)

  106. Hsu, C., Lin, C.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  107. Xu, T., He, D., Luo, Y.: A new orientation for multi-class SVM. In: SNPD 2007. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, vol. 3, pp. 899–904. IEEE Press, New York (2007)

  108. Xu, T.: A new sphere-structure multi-class classifier. In: PACCS’09. Pacific-Asia Conference on Circuits, Communications and Systems, pp. 520–525. IEEE Press, New York (2009)

  109. Liu, S., Liu, Y., Wang, B.: An improved hyper-sphere support vector machine. In: ICNC 2007. Third International Conference on Natural Computation, vol. 1, pp. 497–500. IEEE Press, New York (2007)

  110. Liu, C., Yang, Y., Tang, C.: An improved method for multi-class support vector machines. In: International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), vol. 1, pp. 504–508. IEEE Press, New York (2010)

  111. Salat, R., Osowski, S.: Accurate fault location in the power transmission line using support vector machine approach. IEEE Trans. Power Syst. 19(2), 979–986 (2004)

    Article  Google Scholar 

  112. Thukaram, D., Khincha, H., Ravikumar, B.: An intelligent approach using support vector machines for monitoring and identification of faults on transmission systems. In: Power India Conference, pp. 184–190. IEEE Press, New York (2006)

  113. Thukaram, D., Khincha, H., Vijaynarasimha, H.: Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Trans. Power Deliv. 20(2), 710–721 (2005)

    Article  Google Scholar 

  114. Lukomski, R., Wilkosz, K.: Utilization of support vector machine classifiers to power system topology verification. In: Proceedings of the International Symposium Modern Electric Power Systems (MEPS), pp. 1–6. IEEE Press, New York (2010)

  115. Kunadumrongrath, K., Ngaopitakkul, A.: Discrete wavelet transform and support vector machines algorithm for classification of fault types on transmission line. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2 (2012)

  116. Moulin, L., Da Silva, A., El-Sharkawi, M., Marks, R., et al.: Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst. 19(2), 818–825 (2004)

    Article  Google Scholar 

  117. Ravikumar, B., Thukaram, D., Khincha, H.: Application of support vector machines for fault diagnosis in power transmission system. IET Gener. Transm. Distrib. 2(1), 119–130 (2008)

    Article  Google Scholar 

  118. Shahid, N., Aleem, S.A., Naqvi, I.H., Zaffar, N.: Support vector machine based fault detection and classification in smart grids. In: GC’12 Workshop: Smart Grid Communications: Design for Performance (GC’12 Workshop-SGComm 2012), Anaheim (2012)

  119. Shahid, N., Naqvi, I.H.: Energy efficient outlier detection in wsns based on temporal and attribute correlations. In: International Conference on Emerging Technologies (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Abdul Aleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleem, S.A., Shahid, N. & Naqvi, I.H. Methodologies in power systems fault detection and diagnosis. Energy Syst 6, 85–108 (2015). https://doi.org/10.1007/s12667-014-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-014-0129-1

Keywords

Navigation