Skip to main content
Log in

Abstract

A phase-field model for diffusion-limited crystal growth is formulated that is capable of handling highly anisotropic interfaces. It uses a Willmore regularization that yields corners of finite size. An asymptotic analysis reveals that Herring’s law is recovered for the advancing surfaces. The model is validated by conducting simulations of dendritic growth for low anistorpies and comparing the results to the data from the literature. The model makes it possible to simulate high anisotropy dendrites for which the standard phase-field models are ill-posed. In this regime, the interplay between a Herring instability on the dendrite flanks and the corner regularization creates zig-zag shaped corrugations and leads to a non-monotonic trend of tip velocity as a function of anisotropy strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jackson K A, et al., Liquid Metals and Solidification, Cleveland, ASM (1958), p 174.

    Google Scholar 

  2. Fisher D, and Kurz W, Fundamentals of Solidification, CRC Press, Zurich (1998), pp 1–316.

    Google Scholar 

  3. Herring C, Phys Rev 82, (1951) 87.

    Article  CAS  Google Scholar 

  4. Torabi S, Lowengrub J, Voigt A, and Wise S, Proc R Soc A: Math Phys Eng Sci 465 (2009) 1337.

    Article  Google Scholar 

  5. Eggleston J J, McFadden G B, and Voorhees P W, Physica D: Nonlinear Phenomena 150 (2001) 91.

    Article  CAS  Google Scholar 

  6. Salvalaglio M, Backofen R, Bergamaschini R, Montalenti F, and Voigt A, Cryst Growth Design 15 (2015) 2787.

    Article  CAS  Google Scholar 

  7. Loreti P, and March R, Eur J Appl Math 11 (2000) 203.

    Article  Google Scholar 

  8. Philippe T, Henry H, and Plapp M, Proc R Soc A 476 (2020) 20200227.

    Article  CAS  Google Scholar 

  9. Plapp M, Phys Rev E 84(2011) 031601.

    Article  Google Scholar 

  10. Choudhury A, and Nestler B, Phys Rev E 85 (2012) 021602.

    Article  Google Scholar 

  11. Wise S, Kim J, and Lowengrub J, J Comput Phys 226 (2007) 414.

    Article  Google Scholar 

  12. Wheeler A A, Proc R Soc A: Math Phys Eng Sci 462 (2006) 3363.

    Article  Google Scholar 

  13. Almgren R F, SIAM J Appl Math 59 (1999) 2086.

    Article  Google Scholar 

  14. Karma A, and Rappel W-J, Phys Rev E 57 (1998) 4323.

    Article  CAS  Google Scholar 

  15. Langer J S, Phys Rev A 36 (1987) 3350.

    Article  CAS  Google Scholar 

  16. Barbieri A, Hong D C, and Langer J S, Phys Rev A 35 (1987) 1802.

    Article  CAS  Google Scholar 

  17. Barbieri A, and Langer J S, Phys Rev A 39 (1989) 5314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Agence Nationale de la Recherche, France, under the project FACET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Nani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nani, E.S., Philippe, T. & Plapp, M. Dendrites with Corners. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03218-3

Keywords

Navigation