Skip to main content
Log in

Extraction of High-value Metals from Boron Waste by Bioleaching Using Aspergillus niger

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The demand for high-value metals and therefore metal prices are increasing rapidly due to the use of technological devices in construction and operation. The limited or lack of mineral resources of metals has increased the importance of studies on metal extraction from secondary sources such as mine waste. Hydrometallurgical and pyrometallurgical methods for metal extraction are not applicable due to their cost, environmental risks, and lower efficiency. Biological methods may be a suitable alternative because they are low cost, environmentally friendly, and effective at low metal contents. In this study, bioleaching for the extraction of Li, Rb, and Cs from clay-containing boron waste (BW) was investigated. BW was bioleached with Aspergillus niger (A. niger) in a growth medium in a shaking incubator at 30 °C and 125 rpm, and the pH, organic acids, and metal concentrations in the leaching liquid were measured at specific time intervals. The concentrations of Li, Rb, and Cs extracted during the 31 days were 298.7, 149, and 390 mg kg−1, respectively. The bioleaching residue was determined by FTIR and SEM–EDS analysis. Characterization of the residue revealed interactions between the metals and the metabolites secreted by the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saxena N, Int J Lat Tren Eng Technol 6 (2015) 255.

    Google Scholar 

  2. Fazzo L, Minichilli F, Santoro M, Ceccarini A, Della S M, Bianchi F, Comba P, and Martuzzi M, Environ Health 16 (2017) 1.

    Article  Google Scholar 

  3. Şensöz H, Sayın Z E, Savaş M, and Erdoğan Y, J Sci Eng 21 (2021) 1460. https://doi.org/10.35414/akufemubid.933125

    Article  Google Scholar 

  4. Ertan B, and Erdoğan E, Powder Technol 295 (2016) 254.

    Article  CAS  Google Scholar 

  5. Helvacı C, Mordoğan H, Çolak M, and Gündoğan İ, Int Geol Rev 46 (2004) 177.

    Article  Google Scholar 

  6. Helvacı C, 71st Geological Congress of Turkey (2018) 265.

  7. Ertan B, Pamukkale U J Eng Sc 26 (2020) 1267.

    Article  Google Scholar 

  8. Jaskula B W, Lithium. Geological Survey, Mineral Commodity Summaries 703 (2021) 648.

    Google Scholar 

  9. European Commission, Study on the EU’s list of Critical Raw Materials – Final Report (2020) https://doi.org/10.2873/11619.

  10. Li H, Eksteen J, and Kuang G, Hydrometallurgy 189 (2019) 105129

    Article  CAS  Google Scholar 

  11. Tuck C C, Geological Survey. Mineral Commodity Summaries 703 (2022) 648.

    Google Scholar 

  12. Clearfield A, Solvent Extr Ion Exc 18 (2000) 655.

    Article  CAS  Google Scholar 

  13. Naidu G, Loganathan P, Jeong S, Johir A H, Phuong To V H, Kandasamy J, and Vigneswaran S, Chem Eng J 306 (2016) 31.

    Article  CAS  Google Scholar 

  14. Wang J, Che D, and Qin W, Chin J Chem Eng 23 (2013) 1110.

    Article  Google Scholar 

  15. Yan Q, Li X, Wang Z, Wu X, Guo H, Hu Q, and Wang J, Hydrometallurgy 117 (2012) 116.

    Article  Google Scholar 

  16. Bharadwaj A, and Ting Y P, Adv Mat Res 825 (2013) 280.

    Google Scholar 

  17. Bertrand J C, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T, Environ Microbiol: Fundamentals and Applications, (Eds.). (2015), Dordrecht, The Netherlands: Springer, (pp. 659-753).

  18. Srichandan H, Mohapatra R K, Parhi P K, and Mishra S, Hydrometallurgy 189 (2019) 105122

    Article  CAS  Google Scholar 

  19. Anjum F, Shahid M, and Akcil A, Hydrometallurg 117 (2012) 1.

    Article  Google Scholar 

  20. Burgstaller W, and Schinner F, J Biotechnol 27 (1993) 91.

    Article  CAS  Google Scholar 

  21. Mulligan C N, Kamali M, and Gibbs B F, J Hazard Mater 110 (2004) 77.

    Article  CAS  Google Scholar 

  22. Schuster E, Dunn-Coleman N S, Frisvad J C, and van Dijck P, Appl Microbiol Biotechnol 59 (2002) 426.

    Article  CAS  Google Scholar 

  23. Santhiya D, and Ting Y, J Biotechnol 121 (2006) 62.

    Article  CAS  Google Scholar 

  24. Ren W X, Li P J, Geng Y, and Li X J, J Hazard Mater 167 (2009) 164.

    Article  CAS  Google Scholar 

  25. Qu Y, Lian B, Mo B, and Liu C, Hydrometallurgy 136 (2013) 71.

    Article  CAS  Google Scholar 

  26. Bindschedler S, Bouquet T Q T V, Job D, Joseph E, and Junier P, Adv Appl Microbiol 99 (2017) 53.

    Article  CAS  Google Scholar 

  27. Sheel A, and Pant D, Bioresour Technol 247 (2018) 1189.

    Article  CAS  Google Scholar 

  28. Alavi N, Partovi K, Majlessi M, Rashidi M, and Alimohammadi M, Bioresour Technol Rep 15 (2021) 100768

    Article  CAS  Google Scholar 

  29. Faraji F, Golmohammadzadeh R, Rashchi F, and Alimardani N, J Environ Manag 217 (2018) 775.

    Article  CAS  Google Scholar 

  30. Rasoulnia P, and Mousavi S M, Bioresour Technol 216 (2016) 729.

    Article  CAS  Google Scholar 

  31. Li G, Sun J, Li F, Wang Y, and Li Q, Miner Eng 180 (2022) 107493

    Article  CAS  Google Scholar 

  32. Keshavarz S, Faraji F, Rashchi F, and Mokmeli M, J. Environ. Manage 285 (2021) 112153

    Article  CAS  Google Scholar 

  33. Bahaloo-Horeh N, and Mousavi S M, Waste Manag 60 (2017) 666.

    Article  CAS  Google Scholar 

  34. Welch S A, Barker W W, and Banfield J F, Geochim Cosmochim Acta 63 (1999) 1405.

    Article  CAS  Google Scholar 

  35. Gadd G M, Adv Microb Physiol 41 (1999) 47.

    Article  CAS  Google Scholar 

  36. Goldberg R N, Kishore N, and Lennen R M, J Phys Chem Ref Data 31 (2002) 231.

    Article  CAS  Google Scholar 

  37. Budavari S. The Merck Index: An Encyclopedia of Chemicals Drugs and Biologicals. 11th ed. centennial ed. Merck, 1989, 699 pp. ISBN: 978-0911910285.

  38. Santos A, Yustos P, Quintanilla A, Ruiz G, and Garcia-Ochoa F, Appl Catal B Envir 61 (2005) 323.

    Article  CAS  Google Scholar 

  39. Yang Q, Bin L, Binbin M, and Congqiang L, Hydrometallurgy 136 (2013) 71.

    Article  Google Scholar 

  40. Sun L, and Qiu K, Waste Manag 32 (2012) 1575.

    Article  CAS  Google Scholar 

  41. Bahaloo-Horeh N, Mousavi S M, and Shojaosadati S A, J Power Sources 320 (2016) 257.

    Article  Google Scholar 

Download references

Acknowledgement

The author would like to thank Prof. Dr. Arzu Görmez from Erzurum Technical University, Erzurum, Turkey, for providing fungal culture.

Funding

This study was financially supported by Dumlupinar University under grant number 2021–2041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengü Ertan.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertan, B. Extraction of High-value Metals from Boron Waste by Bioleaching Using Aspergillus niger. Trans Indian Inst Met 76, 3137–3145 (2023). https://doi.org/10.1007/s12666-023-03013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03013-0

Keywords

Navigation