Skip to main content
Log in

Understanding Surface Characteristics and 2-Mercaptobenzothiazole Adsorption on Pyrite, Arsenopyrite and Chalcopyrite Surfaces Using DFT Approach

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Enhanced recoveries of gold-bearing minerals, namely pyrite, chalcopyrite and arsenopyrite, are essential to meet the ever-increasing demand for the precious metal. Since flotation is the 1st step in the recovery of these minerals, a detailed understanding of their surface structure as well as the interaction of the collector molecules with these surfaces is essential to not only rationalize experimental observations but also design new task specific collector molecules. In the present work, we have employed density functional theory (DFT) simulations to understand the surface characteristics of pyrite, arsenopyrite and chalcopyrite and to evaluate the adsorption of a commonly used collector, 2-mercaptobenzothazole (MBT), on these surfaces. DFT calculations reveal that (001) and (100) surfaces of chalcopyrite undergo significant reconstruction, while (110) and (112) surfaces of chalcopyrite, (100) surface of pyrite and (001), (100), (011), (110) and (111) surfaces of arsenopyrite undergo only atomic relaxations. MBT (both the thione and thiol tautomers) chemisorbs on all the three minerals, with the adsorption strength varying in the following order: pyrite > arsenopyrite > chalcopyrite. A stronger adsorption of MBT on pyrite over chalcopyrite explains the experimentally observed selectivity of MBT for the former. Furthermore, results from these simulations provide detailed atomic scale insights into the bonding mechanisms at the surfaces, that are crucial for a rational design of novel flotation collectors with enhanced efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones R S and Fleischer M, Gold in minerals and the composition of native gold (No. 612) (1969). [US Dept. of the Interior, Geological Survey],

  2. Cepedal A, Fuertes-Fuente M, Martin-Izard A, Gonzalez-Nistal S, and Barrero M, Can Miner 46 (2008) 233. https://doi.org/10.3749/canmin.46.1.233

    Article  CAS  Google Scholar 

  3. Wen S, Liu J & Deng J, Component release of fluid inclusions in sulfide mineral, Fluid Inclusion Effect In Flotation Of Sulfide Minerals. (2021) pp 97–150. https://doi.org/10.1016/b978-0-12-819845-2.00005-3

  4. Askarova G, Shautenov M, and Nogaeva K, E3S Web of Conf 168 (2020) 00004. https://doi.org/10.1051/e3sconf/202016800004

    Article  CAS  Google Scholar 

  5. Petersen J, and Dixon D G, Hydrometallurgy 83 (2006) 40. https://doi.org/10.1016/j.hydromet.2006.03.036

    Article  CAS  Google Scholar 

  6. Zachariáš J, Frýda J, Paterová B, and Mihaljevič M, Mineral Mag 68 (2004) 31. https://doi.org/10.1180/0026461046810169

    Article  CAS  Google Scholar 

  7. Hazarika P, Mishra B, and Pruseth K L, Mineral Mag 81 (2017) 661. https://doi.org/10.1180/minmag.2016.080.128

    Article  CAS  Google Scholar 

  8. Hilmy M, and Osman A, Mineralium Deposita 24 (1989) 244. https://doi.org/10.1007/bf00206386

    Article  CAS  Google Scholar 

  9. Allan G, and Woodcock J, Miner Eng 14 (2001) 931. https://doi.org/10.1016/s0892-6875(01)00103-0

    Article  CAS  Google Scholar 

  10. Castellón C, Toro N, Gálvez E, Robles P, Leiva W, and Jeldres R, Materials 15 (2022) 6536. https://doi.org/10.3390/ma15196536

    Article  CAS  Google Scholar 

  11. Sirkeci A, Int J Miner Process 60 (2000) 263–276. https://doi.org/10.1016/s0301-7516(00)00023-5

    Article  CAS  Google Scholar 

  12. Kohad V, Flotation of sulphide ores - HZL experience. In: Workshop on Froth Flotation: Recent Trends, September 22–24,1998, RRL Bhubaneswar. (https://eprints.nmlindia.org/4352/1/18-41.pdf)

  13. Fairthorne G, Fornasiero D, and Ralston J, Int J Miner Process 50 (1997) 227. https://doi.org/10.1016/s0301-7516(97)00048-3

    Article  CAS  Google Scholar 

  14. Forson P, Zanin M, Wood G A, Skinner W, and Asamoah R, Miner Eng 181 (2022) 107524. https://doi.org/10.1016/j.mineng.2022.107524

    Article  CAS  Google Scholar 

  15. Nagaraj D, Basilio C, and Yoon R, Process Complex Ores (1989). https://doi.org/10.1016/b978-0-08-037283-9.50019-6

    Article  Google Scholar 

  16. Young TL, Greene MG, Bauer K, Reber NR, Young SK, Flotation of sulfide mineral species with oils, Ecolab USA Inc., US6827220B1(2004).

  17. Numata Y, Takahashi K, Liang R, and Wakamatsu T, Int J Miner Process 53 (1998) 75.

    Article  CAS  Google Scholar 

  18. Numata Y & Wakamatsu T, Fundamental study of sulfide mineral flotation using 2-mercaptobenzothiazole as a collector. Preprint SME Annual Meeting (1990), Salt Lake City

  19. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, and Ceresoli D, J Phys Condens Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  20. Perdew J, and Wang Y, Phys Rev B 45 (1992) 13244. https://doi.org/10.1103/physrevb.45.13244

    Article  CAS  Google Scholar 

  21. Methfessel M, and Paxton A, Phys Rev B 40 (1989) 3616. https://doi.org/10.1103/physrevb.40.3616

    Article  CAS  Google Scholar 

  22. Monkhorst H, and Pack J, Phys Rev B 13 (1976) 5188. https://doi.org/10.1103/physrevb.13.5188

    Article  Google Scholar 

  23. Kumar D, Srinivasan S G, Jain V, and Rai B, Appl Surf Sci 579 (2022) 152112. https://doi.org/10.1016/j.apsusc.2021.152112

    Article  CAS  Google Scholar 

  24. Fletcher, R., Practical methods of optimization, 1st Edition, Wiley, 55 pp, Print ISBN:9780471915478

  25. Valiev M, Bylaska E J, Govind N, Kowalski K, Straatsma T P, Van Dam H J, Wang D, Nieplocha J, Apra E, Windus T L, and De Jong W A, Comput Phys Commun 181 (2010) 1477.

    Article  CAS  Google Scholar 

  26. Hanwell M D, Curtis D E, Lonie D C, Vandermeersch T, Zurek E, and Hutchison G R, J Cheminf 4 (2012) 1.

    Article  Google Scholar 

  27. Lee C, Yang W, and Parr R G, Phys Rev B 37 (1988) 785.

    Article  CAS  Google Scholar 

  28. Ditchfield R H W J, Hehre W J, and Pople J A, J Chem Phys 54 (1971) 724.

    Article  CAS  Google Scholar 

  29. Silva J, De Abreu H & Duarte H, Electronic and structural properties of bulk arsenopyrite and its cleavage surfaces – a DFT study, RSC Advances, 5 (2015) 2013–2023. https://doi.org/10.1039/c4ra13807d.

  30. Bindi L, Moelo Y, Leone P, Suchaud M., Stoichiometric Arsenopyrite, Feass, From La Roche-Balue Quarry, Loire- Atlantique, France: Crystal Structure and Mossbauer Study, The Canadian Mineralogist, 50 (2012) 471–479. https://doi.org/10.3749/canmin.50.2.471.

  31. Corkhill CL, Wincott PL, Lloyd JR & Vaughan DJ, The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans, Geochimica et Cosmochimica Acta. 72 (23) (2008) 5616–5633. https://doi.org/10.1016/j.gca.2008.09.008.

  32. Ford M, and Ferguson C, Geology 7 (1985) 217. https://doi.org/10.1016/0191-8141(85)90133-6

    Article  Google Scholar 

  33. Corkhill C, Warren M, and Vaughan D, Mineral Mag 75 (2011) 45. https://doi.org/10.1180/minmag.2011.075.1.45

    Article  CAS  Google Scholar 

  34. https://aradi.bitbucket.io/nanocut/index.html, accessed 11st July 2022

  35. Klauber C, Surf Interface Anal Int J Devoted Dev Appl Tech Anal Surf Interfaces Thin Films 35 (5), (2003) 415.

    CAS  Google Scholar 

  36. Thinius S, Islam M, and Bredow T, Surf Sci 669 (2018) 1.

    Article  CAS  Google Scholar 

  37. Hope G, Buckley F, Woods R, and Watling K, ECS Trans 2 (3), (2006) 49.

    Article  Google Scholar 

Download references

Funding

This research was supported by the TCS-CTO organization under the SWON number 1009292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendr Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Goverapet Srinivasan, S., Jain, V. et al. Understanding Surface Characteristics and 2-Mercaptobenzothiazole Adsorption on Pyrite, Arsenopyrite and Chalcopyrite Surfaces Using DFT Approach. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03004-1

Keywords

Navigation