Skip to main content

Advertisement

Log in

Influence of Rheology on the Flow Characteristics of Bauxite Slurries During Hydraulic Conveying Through the Pipeline

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The primary focus of the present study is to demonstrate the role of particle concentration and size distribution on bauxite slurry rheology and slurry transportation. It was previously established that in such systems at shear rates in the range of 10–500 s−1, the slurry is free from wall slip and Taylor vortices. Hence, all our experiments were carried out in this shear rate range. Our rheological data reveals the shear thinning flow behaviour of bauxite slurries irrespective of particle concentration and particle size. The slurry with fine particles enhances the viscosity, which is reduced by incorporating an optimum concentration of coarse particles. The flow coefficients obtained using a Power-law model on the rheological curves are used to calculate head losses, energy consumption, and energy cost for slurry transportation through the pipeline. Results suggest that a large quantity of solids containing heavier and coarser particles can be transported economically with low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edgar T F, Coal processing and pollution control, Gulf Pub. (1983) p 579, ISBN: 9780087201224.

  2. Liu H, Noble J S, Wu J, and Zuniga R, Transp Res Part A Policy Pract 32 (1998) 377. https://doi.org/10.1016/S0965-8564(97)00040-2

    Article  Google Scholar 

  3. Capiau T, An economic Analysis of Pipeline Transport in Flanders An Economic Analysis of Pipeline Transport in Flanders, Master Thesis, Ghent University, Belgium (2010) p 75.

  4. Bose A N and Raju K S, Slurry Transportation in Indian Mines, Ministry of Mines, Govt. of India (2001) p 8–17

  5. Wilson K C, Addie G R, Sellgren A and Clift R, Slurry Transport Using Centrifugal Pumps, Springer, New York (2006) p 432, ISBN: 9780387232621.

  6. Roh N S, Shin D H, Kim D C and Kim J D, Fuel 74 (1995) 1220 https://doi.org/10.1016/0016-2361(95)00041-3.

  7. Prabhakaran K, Sooraj R, Melkeri A, Gokhale N M, and Sharma S C, Ceram Int 35 (2009) 979. https://doi.org/10.1016/j.ceramint.2008.04.004

    Article  CAS  Google Scholar 

  8. He M, Wang Y, and Forssberg E, Int J Miner Process 78 (2006) 63. https://doi.org/10.1016/j.minpro.2005.07.006

    Article  CAS  Google Scholar 

  9. Logos C, and Nguyen Q D, Powder Technol 88 (1996) 55. https://doi.org/10.1016/0032-5910(96)03103-8

    Article  CAS  Google Scholar 

  10. Brown N P and Heywood N I, Slurry Handling: Design of Solid-Liquid Systems, Springer, London (1991) p 680, ISBN: 9781851666454.

  11. Vlasák P, Chára Z, Krupička J, and Konfršt J, J Hydrol Hydromech 62 (2014) 245. https://doi.org/10.2478/johh-2014-0022

    Article  Google Scholar 

  12. Belbsir H, El-Hami K, and Soufi A, Study of the rheological behavior of the phosphate-water slurry and search for a suitable model to describe its rheological behavior. Int J Mech Mechatron Eng 18 (2018) 73.

    Google Scholar 

  13. Buranasrisak P, and Narasingha M H, Int J Chem Eng Appl 3 (2012) 31. https://doi.org/10.7763/ijcea.2012.v3.154

    Article  CAS  Google Scholar 

  14. Indian Bureau of Mines, Indian Minerals Yearbook 2017, Gov. of India, Minist. Mines Nagpur, Part III, 56th Ed. (2018).

  15. Indian Standard, IS 2386–3: Methods of test for aggregates for concrete, Part 3: Specific gravity, density, voids, absorption and bulking, Indian Standard, New Delhi, (1963).

  16. Bird R B, Armstrong R C and Hassager O, Dynamics of polymeric liquids, Volume 1, Wiley (1987) p 672, ISBN: 9780471802457.

  17. Sorbie K S, J. Colloid Interface Sci 139 (1990) p 315. https://doi.org/10.1016/0021-9797(90)90104-V.

  18. Sochi T, Polym Rev 4 (2011) 309. https://doi.org/10.1080/15583724.2011.615961

    Article  CAS  Google Scholar 

  19. Barnes H A, J Nonnewton Fluid Mech 56 (1995) 221. https://doi.org/10.1016/0377-0257(94)01282-M

    Article  CAS  Google Scholar 

  20. Prieve D C, Advanced Fluid Mechanics with Vector Field Theory, Carnegie Mellon University, Pittsburgh (2016), p 216.

    Google Scholar 

  21. Meeker S P, Bonnecaze R T, and Cloitre M, J Rheol 48 (2004) 1295. https://doi.org/10.1122/1.1795171

    Article  CAS  Google Scholar 

  22. Sofra F, in Paste Tailings Manag, Springer (2017) p 33. https://doi.org/10.1007/978-3-319-39682-8_3.

  23. Prasad V, Mehrotra S P and Thareja P, Asia-Pacific J. Chem. Eng. 14 (2019). https://doi.org/10.1002/apj.2358.

  24. Alderman N H, and Heywood N J, Chem Eng Prog 4 (2004) 27.

    Google Scholar 

  25. Singh M K, Kumar S, Ratha D, and Kaur H, Int J Hydrogen Energy 42 (2017) 19135. https://doi.org/10.1016/j.ijhydene.2017.04.259

    Article  CAS  Google Scholar 

  26. Slurry handbook: Guidelines for Slurry pumping, Xylem Inc. 1801 (2013). https://www.xylem.com/siteassets/brand/flygt/flygt-resources/guideline/slurryhandbook-1801_master_low.pdf, Accessed 8th November 2022

  27. Grace J R, Can J Chem Eng 64 (1986) 353. https://doi.org/10.1002/CJCE.5450640301

    Article  CAS  Google Scholar 

  28. Prasad V, Thareja P, and Mehrotra S P, Int J Coal Prep Util 42 (2020) 1263–1277. https://doi.org/10.1080/19392699.2020.1721482

    Article  CAS  Google Scholar 

  29. Chhabra R P, in: Rheol. Complex Fluids, Springer, New York (2010) p 3. https://doi.org/10.1007/978-1-4419-6494-6_1.

  30. Abulnaga B, Slurry systems handbook, McGraw-Hill (2002) p 800, ISBN: 9780071375085.

  31. Dodge D W, and Metzner A B, AIChE 5 (1959) 189.

    Article  Google Scholar 

  32. Miedema S A, J Hydrol Hydromech 63 (2014) 1. https://doi.org/10.1515/johh-2015-0005

    Article  Google Scholar 

  33. Senapati P K, and Mishra B K, Powder Technol. 229 (2012) 119. https://doi.org/10.1016/j.powtec.2012.06.018

    Article  CAS  Google Scholar 

  34. Prasad K S, Principle of fright pricing, south central railway, India (2014). http://www.aitd.net.in/pdf/16/6.%20Principles%20of%20Freight%20Pricing.pdf, accessed 20th November 2022

  35. Charan P, Madaan J and Bajpai A, Study of supply chain of primary raw material (bauxite & alumina) of a mining company-a SAP LAP analysis, 27th Annual Conf. of Prod. and Op. Manag. Soc. (POMS 2016), Orlando, Florida, U.S.A. (2016).

  36. Mehrotra K K, Slurry pipeline: Cost effective solution for steel industry for transportation of iron ore/ coal for long distance by, New Delhi (2017) http://www.iim-delhi.com/upload_events/SlurryPipelineOperations-Presentation.pdf, accessed 20th November 2022

  37. Gupta A, in ASME 2013 India Oil Gas Pipeline Conf. (IOGPC) 45349 (2013) V001T05A003. https://doi.org/10.1115/IOGPC2013-9850.

Download references

Acknowledgements

Authors thank Mr. N.L. Modha (N.L. Modha Pvt. Ltd Porbandar, Gujarat) for providing the bauxite sample. Authors are also thankful to IIT Gandhinagar for providing the experimental facilities. Vighnesh Prasad thanks the Director, CSIR—IMMT Bhubaneswar for the permission to write/edit this draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Pratap Mehrotra.

Ethics declarations

Conflict of interest

Author have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, V., Thareja, P. & Mehrotra, S.P. Influence of Rheology on the Flow Characteristics of Bauxite Slurries During Hydraulic Conveying Through the Pipeline. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-02988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-02988-0

Keywords

Navigation