Skip to main content
Log in

The Effect of Microstructure Size on Microstructure and Properties of High Boron Alloy During Quenching and Partitioning (Q&P) Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of two high boron alloys with different austenite dendrite arm sizes, namely alloy A and alloy B, were investigated before and after being treated by the quenching and partitioning (Q&P) process. The results show that the matrix of alloys is composed of fresh martensite, secondary martensite and film-like or lath-like retained austenite (RA) after being Q&P treated. The fine martensite laths, caused by the smaller size of the dendrite arm, are able to promote the diffusion of carbon during the partitioning process, leading to the formation of RA with a smaller size and higher carbon content. The partial spheroidization of the net-like boride and the improvement of matrix toughness significantly improve the impact toughness and wear resistance of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Çöl M, Koç F G, Öktem H, and Kır D, Wear 348 (2016) 158. https://doi.org/10.1016/j.wear.2015.12.007

    Article  CAS  Google Scholar 

  2. Lentz J, Röttger A, and Theisen W, Acta Mater 99 (2015) 119. https://doi.org/10.1016/j.actamat.2015.07.037

    Article  CAS  Google Scholar 

  3. Jian Y X, Huang Z F, Xing J D, and Li J F, Wear 378–379 (2017) 165. https://doi.org/10.1016/j.wear.2017.02.042

    Article  CAS  Google Scholar 

  4. Lv Z, Fu H G, Xing J D, Ma S Q, and Hui Y, J Alloy Compd 662 (2016) 54. https://doi.org/10.1016/j.jallcom.2015.11.171

    Article  CAS  Google Scholar 

  5. Gou J F, You W, Wang C H, Chu R Q, and Liu S Y, J Alloy Compd 691 (2017) 38825. https://doi.org/10.1016/j.jallcom.2016.08.323

    Article  CAS  Google Scholar 

  6. Yi Y L, Xing J D, Lu Y F, Fu H G, Wan M J, Yu L L, Zheng Q L, and Ya C, Mater Charact 137 (2018) 9026. https://doi.org/10.1016/j.matchar.2018.01.038

    Article  CAS  Google Scholar 

  7. Speer J G, Matlock D K, De Cooman B C, and Schroth J G, Acta Mater 51 (2003) 2622. https://doi.org/10.1016/S1359-6454(03)00059-4

    Article  CAS  Google Scholar 

  8. Jian Y X, Huang Z F, Liu X T, Sun J L, and Xing J D, J Mater Sci Technol 57 (2020) 172. https://doi.org/10.1016/j.jmst.2020.03.058

    Article  CAS  Google Scholar 

  9. Li F, and Li Z H, J Alloy Compd 587 (2014) 267. https://doi.org/10.1016/j.jallcom.2013.10.173

    Article  CAS  Google Scholar 

  10. Cho L, Seo E J, and De Cooman B C, Scripta Mater 123 (2016) 69. https://doi.org/10.1016/j.scriptamat.2016.06.003

    Article  CAS  Google Scholar 

  11. Speer J G, Moor E D, and Clarke A J, Mater Sci Tech-Lond 31 (2015) 3. https://doi.org/10.1179/1743284714Y.0000000628

    Article  CAS  Google Scholar 

  12. Celada-Casero C, Kwakernaak C, Sietsma J, and Santofimia M J, Mater Des 178 (2019) 107847. https://doi.org/10.1016/j.matdes.2019.107847

    Article  CAS  Google Scholar 

  13. Chen M Q, Quek S S, Sha Z D, Chiu C H, Pei Q X, and Zhang Y W, Carbon 85 (2015) 135. https://doi.org/10.1016/j.carbon.2014.12.092

    Article  CAS  Google Scholar 

  14. Matsumura Y, and Yada H, ISIJ Int 27 (1987) 492. https://doi.org/10.2355/isijinternational1966.27.492

    Article  CAS  Google Scholar 

  15. Sugimoto K I, Usui N, Kobayashi M, and Hashimoto S I, ISIJ Int 32 (1992) 1311. https://doi.org/10.2355/isijinternational.32.1311

    Article  CAS  Google Scholar 

  16. Cohen M, Mate T Jim 33 (1992) 178. https://doi.org/10.2320/matertrans1989.33.178

    Article  CAS  Google Scholar 

  17. Sang P, Fu H, Qu Y, Wang C, and Lei Y, Materialwiss Werkst 46 (2011) 962. https://doi.org/10.1002/mawe.201500397

    Article  CAS  Google Scholar 

  18. Flemings M C, Met Trans 5 (1974) 2121. https://doi.org/10.1007/BF02643923

    Article  CAS  Google Scholar 

  19. Zhou D, Kang Z, Yang C, Su X, and Chen C, Int J Metal Cast 16 (2022) 259. https://doi.org/10.1007/s40962-021-00596-6

    Article  Google Scholar 

  20. Kim K, and Voorhees P W, Acta Mater 152 (2018) 14529. https://doi.org/10.1016/j.actamat.2018.04.041

    Article  CAS  Google Scholar 

  21. Li Z, Wu R, Li M W, Zeng S S, Wang Y, Xie T, and Wu T, Materials 14 (2021) 1556. https://doi.org/10.3390/ma14061556

    Article  CAS  Google Scholar 

  22. Yeddu H K, Comp Mater Sci 154 (2018) 75. https://doi.org/10.1016/j.commatsci.2018.07.040

    Article  CAS  Google Scholar 

  23. Chandan A K, Bansal G K, Kundu J, Chakraborty J, and Chowdhury S G, Mat Sci Eng A 768 (2019) 138458. https://doi.org/10.1016/j.msea.2019.138458

    Article  CAS  Google Scholar 

  24. Shen Y F, Qiu L N, Sun X, Zuo L, Liaw P K, and Raabe D, Mat Sci Eng A 636 (2015) 551. https://doi.org/10.1016/j.msea.2015.04.030

    Article  CAS  Google Scholar 

  25. Xiong X C, Chen B, Huang M X, Wang J F, and Wang L, Scripta Mater 68 (2013) 321. https://doi.org/10.1016/j.scriptamat.2012.11.003

    Article  CAS  Google Scholar 

Download references

Funding

The Funding was provided by National Natural Science Foundation of China (Grant number 51771139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, R., Xu, C. et al. The Effect of Microstructure Size on Microstructure and Properties of High Boron Alloy During Quenching and Partitioning (Q&P) Process. Trans Indian Inst Met 76, 1535–1543 (2023). https://doi.org/10.1007/s12666-022-02861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02861-6

Keywords

Navigation