Skip to main content
Log in

A Study on Fatigue Life Assessment of Alloy 718 as a Function of Load Ratio in Conjunction with Newman’s Model

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The influence of load ratio (R) on fatigue crack propagation and fatigue life of alloy 718 was investigated using quarter compact tension specimens under ASTM-E647 with constant amplitude loading. A series of fatigue crack growth experiments have been conducted in this study with R ranging from 0.1 to 0.6. Experimental results revealed that fatigue life increased with increase in R, and however, rapid rise in fatigue life of specimens occurred for \(R\ge 0.5\). This is attributed to drop in imposed stress range for \(R\) \(\ge 0.5\). SEM examination of specimens supports this conclusion. Measurement of fracture surfaces revealed that surface roughness \(( {R}_{a})\) and profile’s average peak height \(({R}_{z})\) decreased with increase in R, resulting in a decreased crack growth rate for a given value of stress intensity range for high roughness fracture surfaces. An attempt has been made to model the life of components using Newman’s model in conjunction with plasticity constraint factor ‘\(\alpha\)’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pradhan D, Mahobia G S, Chattopadhyay K, Fernando D C, Paulose N, Babu S N, and Singh V, Mater Res Express 6 (2019). https://doi.org/10.1088/2053-1591/ab3321.

  2. James L A, Fatigue Crack Propagation in Alloy 718: A Review (1989) 499. https://doi.org/10.7449/1989/superalloys_1989_499_515.

  3. Gustafsson D, Moverare J, Johansson S, Hörnqvist M, Simonsson K, Sjöström S, and Sharifimajda B, Procedia Eng 2 (2010) 1095. https://doi.org/10.1016/j.proeng.2010.03.118.

    Article  Google Scholar 

  4. Zhang X P, Li J C, Wang C H, Ye L, and Mai Y W, Int J Fatigue 24 (2022) 529. https://doi.org/10.1016/S0142-1123(01)00161-X.

    Article  CAS  Google Scholar 

  5. Ji P Q, Zhang X P, and Zhang Q, Int J Rock Mech Min Sci 112 (2018) 171. https://doi.org/10.1016/j.ijrmms.2018.10.015.

    Article  Google Scholar 

  6. Akca E, and Gürsel A, Period Eng Nat Sci 3 (2015). https://doi.org/10.21533/pen.v3i1.43.

  7. King J E, Mater Sci Techno., 3 (2012) 750. https://doi.org/10.1179/026708387790329766.

    Article  Google Scholar 

  8. Antunes F V, Ferreira J M, Branco C M, and Byrne J, Mater High Temp 17 (2000) 439. https://doi.org/10.1179/mht.2000.058.

    Article  CAS  Google Scholar 

  9. Clavel M, and Pineau A, Met Trans A 9 (1978) 471. https://doi.org/10.1007/BF02646402.

    Article  Google Scholar 

  10. Ghonem H, Nicholas T, and Pineau A, Fatigue Fract Eng Mater Struct 16 (1993) 577. https://doi.org/10.1111/j.1460-2695.1993.tb00103.x.

    Article  CAS  Google Scholar 

  11. Reuter W G, Underwood J H, and Newman J C, Fracture Mechanics: 26th Volume (1995).

  12. Schijve J, Int J Fatigue 39 (2003) 7.

    Google Scholar 

  13. Harmain G A, J Metall Mater Sci 47 (2005) 103.

    Google Scholar 

  14. Shahinian P, and Sadananda K, Creep and Fatigue Crack Growth in Several Cast Superalloys (2012) 741. https://doi.org/10.7449/1984/superalloys_1984_741_750.

  15. Führing H, and Seeger T, Eng Fract Mech 11 (1979) 99. https://doi.org/10.1016/0013-7944(79)90033-X.

    Article  Google Scholar 

  16. Ashraf Q J, Prasad Reddy G V, Sandhya R, Laha K, Harmain G A, Fatigue Fract Eng Mater Struct 41 (2018) 336. https://doi.org/10.1111/FFE.12683.

    Article  Google Scholar 

  17. Yamada Y, and Newman J C, Eng Fract Mech 76 (2009) 209. https://doi.org/10.1016/j.engfracmech.2008.09.009.

    Article  Google Scholar 

  18. Sadananda K, Nucl Eng Des 83 (1984) 303.

    Article  CAS  Google Scholar 

  19. James L A, Int J Press Vessel Pip, 5 (1977) 241. https://doi.org/10.1016/0308-0161(77)90006-0.

    Article  CAS  Google Scholar 

  20. Newman J C, Int J Fract 24 (1984) 131. https://doi.org/10.1007/BF00020751.

    Article  Google Scholar 

  21. Budiansky B and Hutchinson JW, J Appl Mech 45 (1978) 247.

    Google Scholar 

  22. Ye S, Gong J C, Zhang X C, Tu S T, and Zhang C C, Acta Metall Sin (English Lett) 30 (2017) 809. https://doi.org/10.1007/s40195-017-0567-6.

    Article  CAS  Google Scholar 

  23. Yao L, Alderliesten R C, and Benedictus R, Compos Part A Appl Sci Manuf 78 (2015) 135. https://doi.org/10.1016/J.COMPOSITESA.2015.08.005.

    Article  CAS  Google Scholar 

  24. Paris P, and Erdogan F, J Basic Eng 85 (1963) 528. https://doi.org/10.1115/1.3656900.

    Article  CAS  Google Scholar 

  25. Elber W, Eng Fract Mech 2 (1970) 37–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Harmain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Harmain, G.A. A Study on Fatigue Life Assessment of Alloy 718 as a Function of Load Ratio in Conjunction with Newman’s Model. Trans Indian Inst Met 76, 1027–1036 (2023). https://doi.org/10.1007/s12666-022-02812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02812-1

Keywords

Navigation