Skip to main content
Log in

Effect of MoS2 Powder-Mixed Electric Discharge Alloying on the Tribological Performance of Ti6Al4V

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, powder-mixed electrical discharge machining (PMEDM) experiments of Ti6Al4V alloy with molybdenum disulfide (MoS2) powders at three levels of concentrations and at three levels of pulse on time (Ton) have been performed. The maximum material removal rate observed was 0.006966 gm/min with the MoS2 powder at 2 gm/L powder concentration, 15 µs Ton, and the minimum tool wear rate (TWR) was 0.000147 gm/min at 3 gm/L and 15 µs Ton. Pin-on-disk experiments were carried out at 50 N load and 1 m/s sliding velocity. MoS2 powder specimens had shown more wear resistance and less coefficient of friction. The wear resistance of Ti6Al4V after PMEDM using MoS2 powder increased by 40.143% at 2 gm/L powder concentration and 40 µs Ton. The tribological performance was enhanced by using powders because these powders act as self-lubricant. Abrasive and delamination wear was the predominant wear mechanisms observed on the worn surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CoF:

Coefficient of friction

EDM:

Electrical discharge machining

EDX:

Energy-dispersive x-ray spectroscopy

LVDT:

Linear variable displacement transducer

MRR:

Material removal rate

PMEDM:

Powder-mixed electrical discharge machining

PMEDA:

Powder-mixed electrical discharge alloying

PoD:

Pin-on-disk

RL:

Recast layer

SEM:

Scanning electron microscopy

SR:

Surface roughness

SWR:

Specific wear rate

Ti64:

Ti6Al4v

TWR:

Tool wear rate

XRD:

X-ray diffraction spectroscopy

Al:

Aluminum

Al2O3 :

Aluminum oxide

C:

Carbon

Cr:

Chromium

EN31:

Case-hardened steel

Fe:

Iron

gm/L:

Gram per liter

gm/min:

Gram per minute

Mo:

Molybdenum

MoO2 :

Molybdenum dioxide

MoS2 :

Molybdenum disulfide

O:

Oxygen

S:

Sulfur

Sa:

Average surface roughness

Ti:

Titanium

TiO:

Titanium oxide

Ton:

Pulse on time

WO3 :

Tungsten trioxide

WS2 :

Tungsten dioxide

References

  1. J. T. Philip, D. Kumar, J. Mathew, and B. Kuriachen, Wear 458 (2020) 203409. https://doi.org/https://doi.org/10.1016/j.wear.2020.203409.

    Article  CAS  Google Scholar 

  2. K. Karolewska, B. Ligaj, M. Wirwicki, and G. Szala, J. Mater. Res. Technol. 9 (2020) 1365. https://doi.org/https://doi.org/10.1016/j.jmrt.2019.11.063.

    Article  CAS  Google Scholar 

  3. J. T. Philip, J. Mathew, and B. Kuriachen, Friction 7 (2019) 497. https://doi.org/https://doi.org/10.1007/s40544-019-0338-7.

    Article  CAS  Google Scholar 

  4. B. Kuriachen and J. Mathew, Mater. Manuf. Process. 31 (2016) 439. https://doi.org/https://doi.org/10.1080/10426914.2015.1004705.

    Article  CAS  Google Scholar 

  5. H. G. Lee, J. Simao, D. K. Aspinwall, R. C. Dewes, and W. Voice, J. Mater. Process. Technol. 149 (2004) 334. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2003.11.049.

    Article  CAS  Google Scholar 

  6. A. Y. Joshi & A. Y. Joshi, Heliyon 5 (2019) e02963. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e02963.

    Article  Google Scholar 

  7. Q. Y. Ming and L. Y. He, J. Mater. Process. Tech. 52 (1995) 44. https://doi.org/https://doi.org/10.1016/0924-0136(94)01442-4.

    Article  Google Scholar 

  8. P. Chaudhury, S. Samantaray, and S. Sahu, Mater. Today Proc. 4 (2017) 2231. https://doi.org/https://doi.org/10.1016/j.matpr.2017.02.070.

    Article  Google Scholar 

  9. A. K. Parida, P. V. Rao, and S. Ghosh, Sadhana - Acad. Proc. Eng. Sci. 45 (2020). https://doi.org/10.1007/s12046-020-01405-2.

  10. S. Mohanty, V. Kumar, R. Tyagi, S. Kumar, B. Bhushan, A. K. Das, and A. R. Dixit, IOP Conf. Ser. Mater. Sci. Eng. 377 (2018) 012040. https://doi.org/https://doi.org/10.1088/1757-899X/377/1/012040.

    Article  Google Scholar 

  11. A. P. Tiwary, B. B. Pradhan, and B. Bhattacharyya, Mater. Manuf. Process. 34 (2019) 1103. https://doi.org/https://doi.org/10.1080/10426914.2019.1628265.

    Article  CAS  Google Scholar 

  12. N. Gosai and A. Joshi, Appl. Mech. Mater. 813–814 (2015) 304. https://doi.org/https://doi.org/10.4028/www.scientific.net/amm.813-814.304.

    Article  Google Scholar 

  13. S. T. Alam, A. N. Amin, M. I. Hossain, M. Huq, and S. H. Tamim, SN Appl. Sci. 3 (2021) 1. https://doi.org/https://doi.org/10.1007/s42452-021-04450-6.

    Article  CAS  Google Scholar 

  14. S. Mohanty, B. Bhushan, A. K. Das, and A. R. Dixit, Int. J. Adv. Manuf. Technol. 105 (2019) 1983. https://doi.org/https://doi.org/10.1007/s00170-019-04380-z.

    Article  Google Scholar 

  15. P. Thasleem, B. Kuriachen, D. Kumar, A. Ahmed, and M. L. Joy, J. Tribol. 143 (2021) 1. https://doi.org/https://doi.org/10.1115/1.4050897.

    Article  CAS  Google Scholar 

  16. C. Prakash, H. K. Kansal, B. S. Pabla, and S. Puri, Mater. Manuf. Process. 32 (2017) 274– 285. https://doi.org/https://doi.org/10.1080/10426914.2016.1198018.

    Article  CAS  Google Scholar 

  17. N. Ekmekci and B. Ekmekci, Mater. Manuf. Process. 31 (2016) 1663. https://doi.org/https://doi.org/10.1080/10426914.2015.1090591.

    Article  CAS  Google Scholar 

  18. M. P. Mughal, M. U. Farooq, J. Mumtaz, M. Mia, M. Shareef, M. Javed, M. Jamil, and C.Pruncu, J. Mech. Behav. Biomed. Mater. 113 (2021) 104145. https://doi.org/https://doi.org/10.1016/j.jmbbm.2020.104145.

    Article  CAS  Google Scholar 

  19. E. Cogun,J. Mech. Eng., 61 (2015) 409. https://doi.org/https://doi.org/10.5545/sv-jme.2015.2460.

  20. S. Chakraborty, S. Mitra, and D. Bose, Int. J. Automot. Mech. Eng. 17 (2020) 8128. https://doi.org/https://doi.org/10.15282/IJAME.17.3.2020.06.0610.

    Article  CAS  Google Scholar 

  21. T. T. Öpöz, H. Yaşar, N. Ekmekci, and B. Ekmekci, J. Manuf. Process. 31 (2018) 744. https://doi.org/https://doi.org/10.1016/j.jmapro.2018.01.002.

    Article  Google Scholar 

  22. Z. M. Zain, M. B. Ndaliman, A. A. Khan, and M. Y. Ali, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228 (2014) 3374. https://doi.org/https://doi.org/10.1177/0954406214530872.

    Article  CAS  Google Scholar 

  23. A. Yadav, S. Mohanty, S. Dwivedi, and A. R. Dixit, Surf. Eng. (2022) 1. https://doi.org/https://doi.org/10.1080/02670844.2022.2044634.

    Article  CAS  Google Scholar 

  24. Q. L. Niu, X. H. Zheng, W. W. Ming, and M. Chen, Tribol. Trans. 56 (2013) 101. https://doi.org/https://doi.org/10.1080/10402004.2012.729296.

    Article  CAS  Google Scholar 

  25. J. Ju, C. Zhao, M. Kang, J. Li, L. He, C. Wang, J. Li, H. Fu, and J. Wang, Tribol. Int. 159 (2021) 106996. https://doi.org/https://doi.org/10.1016/j.triboint.2021.106996.

    Article  CAS  Google Scholar 

  26. Y. Yang, C. Zhang, Y. Wang, Y. Dai, and J. Luo, Tribol. Int. 95 (2016) 27. https://doi.org/https://doi.org/10.1016/j.triboint.2015.10.031.

    Article  CAS  Google Scholar 

  27. T. Dixit, I. Singh, and K. E. Prasad, Ind. Lubr. Tribol. 420–421 (2019) 207. https://doi.org/https://doi.org/10.1016/j.wear.2018.10.021.

    Article  CAS  Google Scholar 

  28. M. Hu, L. Jing, Q. An, W. Ming, C. Bian, and M. Chen, Wear 376–377 (2017) 134. https://doi.org/https://doi.org/10.1016/j.wear.2017.01.025.

    Article  CAS  Google Scholar 

  29. D. Olvera, L. N. L. De Lacalle, G. Urbikain, A. Lamikiz, P. Rodal, and I. Zamakona, Wear 16 (2012) 173. https://doi.org/https://doi.org/10.1080/10910344.2012.673958.

    Article  CAS  Google Scholar 

  30. M. D. Sharma and R. Sehgal, Mach. Sci. Technol. 66 (2014) 174. https://doi.org/https://doi.org/10.1108/ILT-10-2011-0079.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely thank Department of Science and Technology (DST), Govt. of India for carrying out this project under FIST (FIST–No. SR/FST/ETI-388/2015) scheme. Also, the authors thank the UGC DAE Consortium for Scientific Research for the partial financial support to complete this project under CRS/2021-22/04/636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer, R., Reddy, M.V.K., Joshy, J. et al. Effect of MoS2 Powder-Mixed Electric Discharge Alloying on the Tribological Performance of Ti6Al4V. Trans Indian Inst Met 76, 2363–2375 (2023). https://doi.org/10.1007/s12666-022-02786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02786-0

Keywords

Navigation