Skip to main content

Advertisement

Log in

QHOD-Net: A New Highly Metallic Two-Dimensional Carbon Allotrope Material

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We propose a new two-dimensional metallic carbon allotrope named QHOD-net using first-principles calculations, the structure of which includes five carbon rings; quadrangular, pentagonal, hexagonal, octagonal, and decagonal. This metastable phase metallic carbon material displays anisotropic mechanical properties, and its smallest and largest in-plane stiffness have been calculated to be Ca = 261 GPa nm and Cb = 240 GPa nm, respectively, both much lower than for graphene. The Poisson's ratio is as low as 0.29, which has good toughness. The DFT indicates that QHOD-net is metallic with no bandgap in the entire BZ region and one band crosses the Fermi level. At the Fermi level, the electron density of states per atom is much higher, reaching ~ 0.297 eV/states/per atom. In addition, we have performed the 3D stacked structure of the two-dimensional structure QHOD-net, and the results of our study indicate that the stacked structure is a super-hard 3D carbon material (74.8 GPa nm). The two-dimensional structure QHOD-net contains a large number of tetragonal, pentagonal, octagonal, and decagonal carbon rings than the perfect hexagonal shape of ideal graphene. The disorder of the material is increased compared to that of graphene. It is this disorder that triggers these interesting findings, and in addition we provide a new strategy for the design of 2D structures with multiple carbon rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E., Nature 318 (1985) 162.

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature 354 (1991) 56.

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.

    Article  CAS  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385.

    Article  CAS  Google Scholar 

  5. R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87 (1987) 6687.

    Article  CAS  Google Scholar 

  6. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459 (2009) 820.

    Article  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197.

    Article  CAS  Google Scholar 

  8. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, P. Natl. Acad. Sci. USA 112 (2015) 2372.

    Article  CAS  Google Scholar 

  9. X. Wang, J. Rong, Y. Song, X. Yu, Z. Zhan, J. Deng, Phys. Lett. A 381 (2017) 2845.

    Article  CAS  Google Scholar 

  10. S. Thomas, H. Jung, S. Kim, B. Jun, C. H. Lee, S. U. Lee, Carbon 148 (2019) 344.

    Article  CAS  Google Scholar 

  11. X. Wang, Z. Feng, J. Rong, Y. Zhang, Y. Zhong, J. Feng, X. Yu, Z. Zhan, Carbon 142 (2019) 438.

    Article  CAS  Google Scholar 

  12. X. Yu, J. Hou, H. Wu, J. Rong, X. Wang, K. Xu, J. Feng, J. Mater. Chem. A 9 (2021) 21158.

    Article  CAS  Google Scholar 

  13. W. Wang, J. Meng, Y. Hu, J. Wang, Q. Li, J. Yang, J. Mater. Chem. A 10 (2022) 9848.

    Article  CAS  Google Scholar 

  14. N. N. Karaush, G. V. Baryshnikov, B. F. Minaev, Chem. Phys. Lett. 612 (2014) 229.

    Article  CAS  Google Scholar 

  15. Y. Aierken, O. Leenaerts, F.M. Peeters, Phys. Rev. B 94 (2016) 155410.

    Article  Google Scholar 

  16. Q. Fan, L. Yan, M.W. Tripp, O. Krejčí, S. Dimosthenous, S.R. Kachel, M. Chen, A.S. Foster, U. Koert, P. Liljeroth, Science 372 (2021) 852.

    Article  CAS  Google Scholar 

  17. S. Li, K.M. Yam, N. Guo, Y. Zhao, C. Zhang, NPJ 2D Mater. Appl. 5 (2021) 52.

    Article  CAS  Google Scholar 

  18. Q. Li, C. Yang, L. Wu, H. Wang, X. Cui, J. Mater. Chem. A 7 (2019) 5981.

    Article  CAS  Google Scholar 

  19. Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.T. Wang, Y. Ma, Y. Tian, J. Am. Chem. Soc. 134 (2012) 12362.

    Article  CAS  Google Scholar 

  20. M. Segall, P.J. Lindan, M.a. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, M. Payne, J. Phys-Condens. Mat. 14 (2002) 2717.

  21. G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.

    Article  CAS  Google Scholar 

  22. A.E. Mattsson, R. Armiento, P.A. Schultz, T.R. Mattsson, Phys. Rev. B 73 (2006) 195123.

    Article  Google Scholar 

  23. P. Wisesa, K.A. McGill, T. Mueller, Phys. Rev. B 93 (2016) 155109.

    Article  Google Scholar 

  24. R. Evarestov, V. Smirnov, Phys. Rev. B 70 (2004) 233101.

    Article  Google Scholar 

  25. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207.

    Article  CAS  Google Scholar 

  26. S. Baroni, S.D. Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515.

    Article  CAS  Google Scholar 

  27. P. Rosales-Pelaez, I. Sanchez-Burgos, C. Valeriani, C. Vega, E. Sanz, Phys. Rev. E 101 (2020) 022611.

    Article  CAS  Google Scholar 

  28. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126.

    Article  CAS  Google Scholar 

  29. Y. Yao, J.S. Tse, J. Sun, D. Klug, R. Martoňák, T. Iitaka, Phys. Rev. Lett. 102 (2009) 229601.

    Article  CAS  Google Scholar 

  30. F. Liu, P. Ming, J. Li, Phys. Rev. B 76 (2007) 064120.

    Article  Google Scholar 

  31. E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Phys. Rev. B 82 (2010) 235414.

    Article  Google Scholar 

  32. Y. Ding, Y. Wang, J. Phys. Chem. C 117 (2013) 18266.

    Article  CAS  Google Scholar 

  33. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204.

    Article  CAS  Google Scholar 

  34. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, Appl. Surf. Sci. 527 (2020) 146849.

    Article  CAS  Google Scholar 

  35. B. Silvi, A. Savin, Nature 371 (1994) 683.

    Article  CAS  Google Scholar 

  36. J.T. Wang, C. Chen, H.D. Li, H. Mizuseki, Y. Kawazoe, Sci. Rep. 6 (2016) 1.

    Article  Google Scholar 

  37. F. Mouhat, F.X. Coudert, Phys. Rev. B 90 (2014) 224104.

    Article  Google Scholar 

  38. X. L. Sheng, Q.B. Yan, F. Ye, Q.R. Zheng, G. Su, Phys. Rev. Lett. 106 (2011) 155703.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Scientific Research Fund of Yunnan Education Department (Grant Nos. 2020J0416 and 2019J0039); Key projects of basic research plan of Yunnan Science and Technology Department (Grant Nos. 202001AS070048, 202201AU070085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihui Zhong, Chengling Wu or Yuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Zhong, L., Wu, C. et al. QHOD-Net: A New Highly Metallic Two-Dimensional Carbon Allotrope Material. Trans Indian Inst Met 76, 829–835 (2023). https://doi.org/10.1007/s12666-022-02779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02779-z

Navigation