Skip to main content

Advertisement

Log in

Refractory Multi-Principal Element Alloys, CrHfNbTa0.5Zr and CrHfMo0.5Ta0.5Zr, with High Strength at Ambient Temperature

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Two refractory CrHfNbTa0.5Zr and CrHfMo0.5Ta0.5Zr alloys were designed and prepared by a vacuum arc-melting based on HfNbTaTiZr, exhibiting a dendritic structure with different morphologies and phase components. The round/elliptical dendrites surrounded with the intertwined Cr-rich Laves matrix and Zr-rich BCC network structure of the as-cast CrHfNbTa0.5Zr unprecedently improved the yield strength to 1590 ± 22 MPa, 1.7 times more than 929 MPa of HfNbTaTiZr, and retained a promising plasticity of ~ 5%. In contrast, CrHfMo0.5Ta0.5Zr was barely satisfactory either in strength or plasticity, due to the lath-like dendrites composed of the Mo-rich Laves phase with a high-volume fraction of ~ 70%. A common BCC to HCP phase transformation occurred in the two alloys originated from the instability of (Zr, Hf)-rich BCC phase and the relatively high self-diffusivities and interdiffusion of Zr during the annealing. The hard HCP phase further increased the yield strength of the alloy-Nb but deteriorated the plasticity of the two alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akande I G, Oluwole O O, Fayomi O S I, and Odunlami O A, Mater Today: Proc 43 (2021) 2222-2231.

    CAS  Google Scholar 

  2. Ding Q, Bei H, Yao X, Zhao X, and Zhang Z, Appl Mater Today 23 (2021) 101061.

  3. Mehdizadeh M & Farhangi H, Mater Sci Eng A 841 (2022) 143025.

    Article  CAS  Google Scholar 

  4. Liu X, Cai W, Chen Z, Chen Y, and Wang C, Intermetallics 141 (2022) 107431.

  5. Park J U, Jun SY, Lee B H, Jang J H, and Hong H U, Addit Manuf 52 (2022) 102680.

  6. Miracle D B, Nat Commun 10 (2019) 1805.

    Article  CAS  Google Scholar 

  7. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375-377 (2004) 213.

    Article  Google Scholar 

  8. Yeh J W, Chen S K, Lin S J, Gan J Y, and Chang S Y, Adv Eng Mater 6 (2004) 299.

  9. Senkov O N, Wilks G B, Scott J M, and Miracle D B, Intermetallics 19 (2011) 698.

    Article  CAS  Google Scholar 

  10. Senkov O N, Scott J M, Senkova SV, Miracle DB, and Woodward CF, J Alloy Compd 509 (2011) 6043.

    Article  CAS  Google Scholar 

  11. Senkov O N, Scott J M, Senkova S V, Meisenkothen F, and Woodward C F, J Mater Sci 47 (2012) 4062.

  12. Chen S, Tseng K K, Tong Y, Li W, and Liaw P K, J Alloy Compd 795 (2019) 19.

  13. Ai C, Wang G, Liu L, Guo M, and Gan B, Intermetallics 120 (2020) 106769.

  14. Fazakas É, Zadorozhnyy V, Varga L K, Inoue A, and Vitos L, Int J Refract Met H 47 (2014) 131.

  15. Guo N N, Wang L, Luo L S, Li X Z, and Fu H Z, Mater Des 81 (2015) 87.

  16. Gao X J, Wang L, Guo N N, Luo L S, and Guo J J, Int J Refract Met H 95 (2021) 105405.

  17. Rabadia C D, Liu Y J, Wang L, Sun H, and Zhang L C, Mater Des 154 (2018) 228.

    Article  CAS  Google Scholar 

  18. Chen S Y, Tong Y, Tseng K K, Yeh J W, and Liaw P K, Scripta Mater 158 (2019) 50.

    Article  CAS  Google Scholar 

  19. Senkov O N, Pilchak A L, and Semiatin SL, Metal Mater Trans A 49 (2018) 2876.

    Article  CAS  Google Scholar 

  20. Yi J, Yang L, Wang L, Xu M, and Liu L, Met Mater Int 28 (2021) 227.

    Article  Google Scholar 

  21. Yi J, Wang L, Xu M, and Yang L, Mater Tehnol 55 (2021) 305.

  22. Zhang J, Gadelmeier C, Sen S, Wang R, and Divinski S V, Acta Mater 233 (2022) 117970.

  23. Rickman J M, Chan H M, Harmer M P, Smeltzer J A, and Balasubramanian G, Nat Commun 10 (2019) 2618.

  24. Schuh B, Völker B, Todt J, Schell N, and Hohenwarter A, Acta Mater 142 (2018) 201.

  25. Yi J, Yang L, Xu M, Wang L, and Liu L, J Mater Sci 56 (2021) 11448.

    Article  CAS  Google Scholar 

  26. Wang L, Wang J, Niu H, Yang G, and Yi J, J Alloy Compd 908 (2022) 164683.

Download references

Acknowledgements

Financial supports from Changzhou Science and Technology Bureau (No. CJ20220057, CJ20210065, CQ20210086) and Graduate Practice and Innovation Projects of Jiangsu University of Technology (XSJCX22_03) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaojiao Yi.

Ethics declarations

Conflict of Interest

There are no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Feng, Z., Xu, M. et al. Refractory Multi-Principal Element Alloys, CrHfNbTa0.5Zr and CrHfMo0.5Ta0.5Zr, with High Strength at Ambient Temperature. Trans Indian Inst Met 76, 719–727 (2023). https://doi.org/10.1007/s12666-022-02768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02768-2

Keywords

Navigation