Skip to main content
Log in

Effect of Aluminum Addition on Microstructure, Recrystallization and Work Hardening of MnCrCoFeNi High-Entropy Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the current study, 3, 5 and 8 at% aluminum were added to Cantor alloy, and the subsequent effects on microstructure, recrystallization temperature, hardness and work-hardening rate were investigated. For this purpose, the alloy was prepared employing vacuum arc remelting method. After casting, homogeneous annealing and cold rolling, the samples were annealed at different temperatures of 400–1100 °C for 1 h. Results showed that the melting point decreased with increasing aluminum content, while recrystallization was delayed with an increase in the temperature. The recrystallization temperature of the Cantor alloy by adding of 3, 5 and 8 at% aluminum increased from 800 to 900, 1000, and 1100 °C, respectively. In the annealing process of the samples, it was found that the B2 precipitates formed and the hardness of the alloy increased significantly by 8 at% Al at 600 °C. Furthermore, addition of Al to a Cantor alloy also increased the lattice strain and consequently reduced the stacking fault energy. A new kind of nanotwinned materials called hierarchical nanotwinned have been developed and could be more important in strain-hardening capability. Therefore, the behavior of work-hardening rate of the alloy indicated the effect of twins on the deformation mechanism of the alloy. Finally, the presence of nanotwin and B2 precipitates was investigated by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303. https://doi.org/https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  2. J.-W. Yeh, Recent progress in high-entropy alloys, Eur. J. Control - EUR J Control. 31 (2006) 633–648. https://doi.org/10.3166/acsm.31.633-648.

    Article  CAS  Google Scholar 

  3. W. Lu, X. Luo, Y. Yang, J. Zhang, B. Huang, Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy, Mater. Chem. Phys. 238 (2019) 121841. https://doi.org/10.1016/j.matchemphys.2019.121841.

    Article  CAS  Google Scholar 

  4. C.-C. Tung, J.-W. Yeh, T. Shun, S.-K. Chen, Y.-S. Huang, H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61 (2007) 1–5. https://doi.org/https://doi.org/10.1016/j.matlet.2006.03.140.

    Article  CAS  Google Scholar 

  5. Y.-L. Chen, Y.-H. Hu, C.-W. Tsai, C.-A. Hsieh, S.-W. Kao, J.-W. Yeh, T.-S. Chin, P.-H. Lee, Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, J. Alloys Compd. 477 (2009) 696–705. https://doi.org/10.1016/j.jallcom.2008.10.111.

    Article  CAS  Google Scholar 

  6. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218. https://doi.org/https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  7. Y. Zhang, X. Yang, P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, JOM. 64 (2012) 830–838. https://doi.org/10.1007/s11837-012-0366-5.

    Article  CAS  Google Scholar 

  8. M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett. 100 (2012) 251907. https://doi.org/10.1063/1.4730327.

    Article  CAS  Google Scholar 

  9. X. Yang, Y. Zhang, P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Eng. 36 (2012) 292–298. https://doi.org/https://doi.org/10.1016/j.proeng.2012.03.043.

    Article  CAS  Google Scholar 

  10. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. https://doi.org/10.1063/1.3587228.

    Article  CAS  Google Scholar 

  11. X. Li, X. Yang, D. Yi, B. Liu, J. Zhu, J. Li, C. Gao, L. Wang, Effects of NbC content on microstructural evolution and mechanical properties of laser cladded Fe50Mn30Co10Cr10-xNbC composite coatings, Intermetallics. 138 (2021) 107309. https://doi.org/https://doi.org/10.1016/j.intermet.2021.107309.

    Article  CAS  Google Scholar 

  12. C.-H. Tsau, M.-C. Tsai, The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys, Entropy . 20 (2018). https://doi.org/10.3390/e20090648.

    Article  Google Scholar 

  13. C. Dai, T. Zhao, C. Du, Z. Liu, D. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys, J. Mater. Sci. Technol. 46 (2020) 64–73. https://doi.org/https://doi.org/10.1016/j.jmst.2019.10.020.

    Article  CAS  Google Scholar 

  14. H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy . 18 (2016). https://doi.org/10.3390/e18090321.

    Article  Google Scholar 

  15. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. https://doi.org/https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  CAS  Google Scholar 

  16. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. https://doi.org/https://doi.org/10.1016/j.actamat.2014.08.026.

    Article  CAS  Google Scholar 

  17. F.J. Wang, Y. Zhang, G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, J. Alloys Compd. 478 (2009) 321–324. https://doi.org/https://doi.org/10.1016/j.jallcom.2008.11.059.

    Article  CAS  Google Scholar 

  18. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511. https://doi.org/https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  19. T.-T. Shun, C.-H. Hung, C.-F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, J. Alloys Compd. 493 (2010) 105–109. https://doi.org/https://doi.org/10.1016/j.jallcom.2009.12.071.

    Article  CAS  Google Scholar 

  20. J. Kumar, N. Kumar, S. Das, N.P. Gurao, K. Biswas, Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy, Trans. Indian Inst. Met. 71 (2018) 2749–2758. https://doi.org/10.1007/s12666-018-1443-4.

    Article  CAS  Google Scholar 

  21. N. Singh, Y. Shadangi, G.S. Goud, V.K. Pandey, V. Shivam, N.K. Mukhopadhyay, Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering, Trans. Indian Inst. Met. 74 (2021) 2203–2219. https://doi.org/10.1007/s12666-021-02262-1.

    Article  CAS  Google Scholar 

  22. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, N.K. Mukhopadhyay, Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, J. Alloys Compd. 757 (2018) 87–97. https://doi.org/https://doi.org/10.1016/j.jallcom.2018.05.057.

    Article  CAS  Google Scholar 

  23. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, T. Egami, Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, JOM. 65 (2013) 1848–1858. https://doi.org/10.1007/s11837-013-0776-z.

    Article  CAS  Google Scholar 

  24. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. https://doi.org/https://doi.org/10.1016/j.actamat.2013.09.037.

    Article  CAS  Google Scholar 

  25. X. Li, D. Yi, X. Wu, J. Zhang, X. Yang, Z. Zhao, Y. Feng, J. Wang, P. Bai, B. Liu, Y. Liu, Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting, J. Alloys Compd. 881 (2021) 160459. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.160459.

    Article  CAS  Google Scholar 

  26. Y. Zhao, K. Liu, H. Hou, L.-Q. Chen, Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study, Mater. Des. 216 (2022) 110555. https://doi.org/https://doi.org/10.1016/j.matdes.2022.110555.

    Article  CAS  Google Scholar 

  27. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol. 29 (2018) 2221–2230. https://doi.org/https://doi.org/10.1016/j.apt.2018.06.006.

    Article  CAS  Google Scholar 

  28. Y. Zhong, J. Xie, Y. Chen, L. Yin, P. He, W. Lu, Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer, Mater. Lett. 306 (2022) 130896. https://doi.org/https://doi.org/10.1016/j.matlet.2021.130896.

    Article  CAS  Google Scholar 

  29. Y. Zhao, Stability of phase boundary between L12-Ni3Al phases: A phase field study, Intermetallics. 144 (2022) 107528. https://doi.org/https://doi.org/10.1016/j.intermet.2022.107528.

    Article  CAS  Google Scholar 

  30. M. Tayebi, H. Najafi, S. Nategh, A. Khodabandeh, Creep Behavior of ZK60 Alloy and ZK60/SiCw Composite After Extrusion and Precipitation Hardening, Met. Mater. Int. 27 (2021) 3905–3917. https://doi.org/10.1007/s12540-020-00877-5.

    Article  CAS  Google Scholar 

  31. M. Tayebi, S. Nategh, H. Najafi, A. Khodabandeh, Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging, J. Alloys Compd. 830 (2020) 154709. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154709.

    Article  CAS  Google Scholar 

  32. F. Otto, N.L. Hanold, E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics. 54 (2014) 39–48. https://doi.org/https://doi.org/10.1016/j.intermet.2014.05.014.

    Article  CAS  Google Scholar 

  33. G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing, J. Alloys Compd. 647 (2015) 548–557. https://doi.org/https://doi.org/10.1016/j.jallcom.2015.05.129.

    Article  CAS  Google Scholar 

  34. Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126–129. https://doi.org/https://doi.org/10.1016/j.matlet.2015.03.066.

    Article  CAS  Google Scholar 

  35. O. Renk, A. Hohenwarter, K. Eder, K.S. Kormout, J.M. Cairney, R. Pippan, Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?, Scr. Mater. 95 (2015) 27–30. https://doi.org/https://doi.org/10.1016/j.scriptamat.2014.09.023.

    Article  CAS  Google Scholar 

  36. L. Liang, M. Xu, Y. Chen, T. Zhang, W. Tong, H. Liu, H. Wang, H. Li, Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting, Mater. Sci. Eng. A. 819 (2021) 141507. https://doi.org/https://doi.org/10.1016/j.msea.2021.141507.

    Article  CAS  Google Scholar 

  37. Z.M. Liang, G.Y. Wang, Z. Bin Sun, D.L. Wang, L.W. Wang, Y.M. Liang, Rapidly improved tensile strength of 6N01 Al alloy FSW joints by electropulsing and artificial aging treatment, Mater. Sci. Eng. A. 841 (2022) 143056. https://doi.org/https://doi.org/10.1016/j.msea.2022.143056.

    Article  CAS  Google Scholar 

  38. X. Xian, Z.-H. Zhong, L.-J. Lin, Z.-X. Zhu, C. Chen, Y.-C. Wu, Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al, Rare Met. 41 (2022) 1015–1021. https://doi.org/10.1007/s12598-018-1161-4.

    Article  CAS  Google Scholar 

  39. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Mater. Des. 86 (2015) 598–602. https://doi.org/https://doi.org/10.1016/j.matdes.2015.07.161.

    Article  CAS  Google Scholar 

  40. Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure, Sci. Rep. 7 (2017) 42742. https://doi.org/10.1038/srep42742.

    Article  CAS  Google Scholar 

  41. L. Jiang, D. Qiao, Z. Cao, C. Lu, M. Song, L. Wang, Tunable mechanical property and strain hardening behavior of a single-phase CoFeNi2V0.5Mo0.2 high entropy alloy, Mater. Sci. Eng. A. 776 (2020) 139027. https://doi.org/https://doi.org/10.1016/j.msea.2020.139027.

    Article  CAS  Google Scholar 

  42. M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, X.Z. Liao, Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures, Int. J. Plast. 123 (2019) 178–195. https://doi.org/https://doi.org/10.1016/j.ijplas.2019.07.017.

    Article  CAS  Google Scholar 

  43. L. Sun, X. He, J. Lu, Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts, Npj Comput. Mater. 4 (2018) 6. https://doi.org/10.1038/s41524-018-0062-2.

    Article  CAS  Google Scholar 

  44. V. Shivam, J. Basu, R. Manna, N.K. Mukhopadhyay, Local Composition Migration Induced Microstructural Evolution and Mechanical Properties of Non-equiatomic Fe40Cr25Ni15 Al15Co5 Medium-Entropy Alloy, Metall. Mater. Trans. A. 52 (2021) 1777–1789. https://doi.org/10.1007/s11661-021-06188-7.

    Article  CAS  Google Scholar 

  45. H. Kaypour, S. Nategh, R. Gholamipour, A. Khodabandeh, High-temperature compressive behavior and kinetics analysis of Al0.4MnCrCoFeNi high entropy alloy, Mater. Res. Express. 8 (2021) 66505. https://doi.org/10.1088/2053-1591/ac045c.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Gholamipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaypour, H., Nategh, S., Gholamipour, R. et al. Effect of Aluminum Addition on Microstructure, Recrystallization and Work Hardening of MnCrCoFeNi High-Entropy Alloy. Trans Indian Inst Met 76, 119–133 (2023). https://doi.org/10.1007/s12666-022-02718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02718-y

Keywords

Navigation