Skip to main content
Log in

Microstructure, Mechanical Properties and Fracture Toughness of SS 321 Stainless Steel Manufactured Using Wire Arc Additive Manufacturing

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, a multi-layered wall was fabricated using Wire Arc Additive Manufacturing (WAAM) process using ER321 filler wire to evaluate the static and dynamic mechanical properties. The micrographs of WAAM processed SS 321 revealed the existence of columnar and equiaxed dendrites along the building direction, and recrystallization of grains was observed due to the re-melting of former layers. The microstructure was dominantly austenitic with a small fraction of ferrite (FN) within the austenitic matrix. Comparable tensile properties were noticed for as-deposited SS 321 WAAM samples in comparison to wrought grade. This is attributed to the presence of equiaxed and columnar dendritic microstructure with a formation of residual delta ferrites along the build direction. The hardness gradually reduced from the bottom (250 HV) to the top (199 HV) region in WAAM SS 321 wall due to the difference in microstructure with varying ferrite fractions (5.9 to 3.6 FN). The fracture toughness of wrought SS 321 and WAAM processed SS 321 was 162 kJ/m2 and 153 kJ/m2. The manufacturing techniques influenced the fracture behaviour and were confirmed from the J-R curves obtained from the strain energy rate required to initiate the crack growth. This study demonstrates the potential of WAAM technology for the fabrication of free-form structural components with comparable mechanical properties and fracture toughness in comparison to wrought alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheepu M, Lee C I, and Cho S M, Trans Indian Inst Met 73 (2020), 1475. https://doi.org/10.1007/s12666-020-01915-x

  2. Liu Z, He B E I, Lyu T, and Zou Y U, JOM 73 (2021) 1804. https://doi.org/10.1007/s11837-021-04670-6

  3. Milner B B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F and Plessis A, Mater Des 209 (2021) 110008. https://doi.org/10.1016/j.matdes.2021.110008

  4. Nkhoma R K C, Siyasiya C W, and Stumpf W E, J Alloys Compd 595 (2014), 103. https://doi.org/10.1016/j.jallcom.2014.01.157

  5. Kasana S S and Pandey O P, Mater Today Commun 26 (2021) 101959. https://doi.org/10.1016/j.mtcomm.2020.101959

  6. Wang J, Su H, Chen K, Du D, Zhang L, and Shen Z, Corros Sci 158 (2018), 108079. https://doi.org/10.1016/j.corsci.2019.07.005

  7. Huang Y, Bull Mater Sci 25 (2002), 47. https://doi.org/10.1007/BF02704594

  8. Beaman J J, Bourell D L, Seepersad C C, and Kovar D, J Manuf Sci En 142 (2020) 110812. https://doi.org/10.1115/1.4048193

  9. Cunningham C R, Flynn J M, Shokrani A, Dhokia V, and Newman S T, Addit Manuf, 22 (2018), 672. https://doi.org/10.1016/j.addma.2018.06.020

  10. Kannan A R, Shanmugam N S, Ramkumar K D, and Rajkumar V, Trans Indian Inst Met 74 (2021) 1673. https://doi.org/10.1007/s12666-021-02257-y

  11. Patel M, Mulgaonkar S, Desai H, and Borse T, Trans Indian Inst Met, 74 (2021) 1129. https://doi.org/10.1007/s12666-020-02154-w

  12. Kumar S M, Kannan A R, Pramod R, Shanmugam N S, Muthu S M, and Dhinakaran V, Mater. Lett., 314 (2022) 131913. https://doi.org/10.1016/j.matlet.2022.131913

  13. Osipovich K S, Kalashnikov K N, and Beloborodov V A, Mechanical properties of 321 stainless steel samples obtained by electron-beam additive manufacturing AIP Conf. Proc., 2167 (1) (2019) 20255.https://doi.org/10.1063/1.5132122

  14. Moskvina V, Astafurova E, Astafurov S, Reunova K, Panchenko M, Melnikov E, Kolubaev E, Metals, 12 (2022), 176. https://doi.org/10.3390/met12020176

  15. Gordon J V, Haden C V, Nied H F, Vinci R P, Harlow D G, Mater Sci Eng A 724 (2018) 431. https://doi.org/10.1016/j.msea.2018.03.075

  16. Ganesh P, Moitra A, Sathyanarayanan S, Kaul R, Sasikala G, Prasad R C, and Kukreja L M, Mater Des 59 (2014), 509. https://doi.org/10.1016/j.matdes.2014.03.013

  17. Dirisu P, Ganguly S, Mehmanparast A, Martina F, and Williams S, Mater Sci Eng A 765 (2019), 138285. https://doi.org/10.1016/j.msea.2019.138285

  18. Kumar D, Jhava S, Arya A, Prashanth K G, and Suwas S, Int J Fract 235 (2021) 1. https://doi.org/10.1007/s10704-021-00574-3

  19. Lucon E, Scibetta M, Chaouadi R, and van Walle E, J ASTM Int, 3 (2006). 1 https://doi.org/10.1520/JAI13235

  20. Zhu X K and McGaughy T, Evaluation of Fracture Toughness CTOD Testing and its Standard Test Methods for SENB Specimens, Proceedings of the ASME 2018 Pressure Vessels and Piping Conference, 51678 (2018), V06AT06A023. https://doi.org/10.1115/PVP2018-84975

  21. ASTM E1820–21 Standard Test Method for Measurement of Fracture Toughness, 2022. https://www.astm.org/e1820-21.html

  22. Palani P K and Murugan N, Mater Manuf Processes, 21 (2006) 431.

  23. Ge J, Lin J, Chen Y, Lei Y, and Fu H, J Alloys Compd 748 (2018) 911. https://doi.org/10.1016/j.jallcom.2018.03.222

  24. Rodrigues T A, Escobar J D, Shen J, Duarte V R, Ribamar G G, Avila J A, Schell E, Maawad N, Santos T G, and Oliveira J P, Addit Manuf 48 (2021) 102428. https://doi.org/10.1016/j.addma.2021.102428

  25. Vieille B, Keller C, Mokhtari M, Briatta H, Breteau T, Nguejio J, Barbe F, Ben Azzouna M, and Baustert E, Mater Sci Eng A, 790 (2020) 139666. https://doi.org/10.1016/j.msea.2020.139666

  26. Ghorbanpour S, Sahu S, Deshmukh K, Borisov E, Riemslag T, Reinton E, Bertolo V, Jiang Q, Popovich A, Shamshurin A, Knezevic M, and Popovich V, Mater Charact 179 (2021) 111350. https://doi.org/10.1016/j.jmatprotec.2022.117573

  27. Al-Haidary J T, Wahab A A, and Salam E H A, Metall Mater Trans A 37 (2006) 3205. https://doi.org/10.1007/BF02586155

  28. Idris R, and Prawoto Y, Mater Sci Eng A 552 (2012) 547. https://doi.org/10.1016/j.msea.2012.05.085

  29. Nakajima Y, Uno Y, and Suzuki M, Eng Fract Mech 33 (1989) 295. https://doi.org/10.1016/0013-7944(89)90031-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Siva Shanmugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, K.S., Kannan, A.R., Pramod, R. et al. Microstructure, Mechanical Properties and Fracture Toughness of SS 321 Stainless Steel Manufactured Using Wire Arc Additive Manufacturing. Trans Indian Inst Met 76, 537–544 (2023). https://doi.org/10.1007/s12666-022-02713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02713-3

Keywords

Navigation