We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Effect of Hydrogen Isotopes on Delayed Hydride Cracking Behavior of Zr-2.5Nb Pressure Tube Material

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To study the effect of hydrogen isotopes on the delayed hydride cracking (DHC) behavior, Zr-2.5Nb pressure tube (PT) material was charged with about 100wppm hydrogen or deuterium and DHC tests were carried out between 202 and 283 °C. At 202 °C, DHC velocity ratio of hydrogen- and deuterium-charged Zr-2.5Nb PT material was less than the ideal value of √2. The lower velocity ratio was explained on the basis of terminal solid solubility for dissolution (TSSD) and residual hydrogen (HR) present in deuterium-charged PT material. Using TSSD and HR, a mixture rule was developed to predict the DHC velocity of deuterium-charged material (\({V}_{DHC}^{D}\)) as well as DHC velocity ratio of hydrogen- and deuterium-charged material. The mixture rule was evaluated using present data and data reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. wppm reported throughout this manuscript is in the term of hydrogen equivalent (Heq.).

    wppm(Heq.) = wppm(H) + wppm(D)/2.

Abbreviations

ASTM:

American Society for Testing and Materials

CCT:

Curved compact tension

DCPD:

Direct current potential drop

DHC:

Delayed hydride cracking

EDM:

Electrodischarge machining

H R :

Residual hydrogen concentration

K :

Stress intensity factor

OD:

Outside diameter

PHWR:

Pressurized heavy water reactor

PT:

Pressure tube

Q :

Activation energy associated with DHC

R :

Gas constant

T :

Temperature in degree kelvin

t oper :

Operator response time

TSSD :

Terminal solid solubility for dissolution

UTM:

Universal testing machine

V DHC :

DHC velocity

\({V}_{DHC}^{D}\) :

DHC velocity of deuterium-charged material

\({\left({V}_{DHC}^{D}\right)}_{P}\) :

Predicted \({V}_{DHC}^{D}\) using the rule of mixture

\({V}_{DHC}^{H}\) :

DHC velocity of hydrogen-charged material

\(\left(\frac{{V}_{DHC}^{H}}{{V}_{DHC}^{D}}\right)\) :

VDHC Ratio of hydrogen- and deuterium-charged material

\({\left(\frac{{V}_{DHC}^{H}}{{V}_{DHC}^{D}}\right)}_{P}\) :

Predicted VDHC ratio of hydrogen- and deuterium-charged material

wppm:

Weight part per million

References

  1. Dietz W, Structural materials, in: R.W. Cahn, P. Haasen, E.J. Kramer, (Eds.), Materials Science and Technology: A Comprehensive Treatment, 10B Nuclear Materials, Chapter 8 (1994) 56.

  2. Lemaignan C, Motta A T, Structural materials, in: R.W. Cahn, P. Haasen, E.J. Kramer, (Eds.), Materials Science and Technology: A Comprehensive Treatment, 10B Nuclear Materials, Chapter 7, (1994) 1.

  3. C.E. Coleman, B.A. Cheadle, C.D. Cann, J.R. Theaker, ASTM STP 1295 (1996) 884.

    Google Scholar 

  4. D. O. Northwood, and U. Kosasih, Int. Met. Rev. 28(2) (1983) 92.

    Article  CAS  Google Scholar 

  5. Cheadle B A, J. ASTM Int. 7 (2010), Paper ID JAI103057.

  6. R.N. Singh, U.K. Viswanathan, P.M. Sunil Kumar, S. Satheesh, Per Stahle, Anantharaman, Nucl. Eng. Des. 241 (2011) 2425.

    Article  CAS  Google Scholar 

  7. R.N. Singh, A.K. Bind, N.S. Srinivasan, P. Ståhle, J. Nucl. Mater. 432 (2013) 87.

    Article  CAS  Google Scholar 

  8. A.K. Bind, R.N. Singh, H.K. Khandelwal, S. Sunil, J.K. Chakravartty, A. Ghosh, P. Dhandharia, D. Bachawatand, S. Vijayakumar, Mater. Perform. Charact. 3 (2014) 322.

    Google Scholar 

  9. L.A. Simpson, C.D. Cann, J. Nucl. Mater. 87 (1979) 303.

    Article  CAS  Google Scholar 

  10. P.H. Davies, C.P. Sterns, ASTM STP 905 (1986) 379.

    CAS  Google Scholar 

  11. F.H. Huang, ASTM STP 1204 (1993) 182.

    Google Scholar 

  12. S.I. Honda, Nucl. Eng. Des. 81 (1984) 159.

    Article  CAS  Google Scholar 

  13. U.K. Viswanathan, R.N. Singh, C.B. Basak, S. Anantharaman, K.C. Sahoo, J. Nucl. Mater. 350 (2006) 310.

    Article  CAS  Google Scholar 

  14. Rishi K. Sharma, A.K. Bind, G. Avinash, R.N. Singh, Asim Tewari, B.P. Kashyap, J. Nucl. Mater. 508 (2018) 546.

    Article  CAS  Google Scholar 

  15. A. K. Bind, R. N. Singh, H. K. Khandelwal, S. Sunil, G. Avinash, J. K. Chakravartty and P. Ståhle (2015), J. Nucl. Mater. 465 (2015) 177.

    Article  CAS  Google Scholar 

  16. R.N. Singh, A.K. Bind, H.K. Khandelwal, B.N. Rath, S. Sunil, P. Ståhle, J.K. Chakravartty, Mater. Sci. Eng., A 621 (2015) 190

    Article  CAS  Google Scholar 

  17. Rishi K. Sharma, Saurav Sunil, B.K. Kumawat, R.N. Singh, Asim Tewari, B.P. Kashyap, J. Nucl. Mater. 488 (2017) 231.

    Article  CAS  Google Scholar 

  18. A. K. Bind, R. N. Singh, Saurav Sunil, J. Chattopadhyay, J. Nucl. Mater.496 (2017) 182.

    Article  CAS  Google Scholar 

  19. H.K. Khandelwal, R.N. Singh, A.K. Bind, S. Sunil, J.K. Chakravartty, A. Ghosh, P. Dhandharia, D. Bhachawat, R. Shekhar, Sunil Jai Kumar, Nucl. Eng. Des. 293 (2015) 138.

    Article  CAS  Google Scholar 

  20. Gopalan A, Bind A K, Sunil S, Murty T N, Sharma R K, Samanta A, Soren A, Singh R N, J. Nucl. Mater. (2020) 152681.

  21. A.K. Bind, R.N. Singh, Int. J. Fract. 227 (2021) 193.

    Article  CAS  Google Scholar 

  22. Sawatzky A, Atomic Energy Can. Ltd, 1964. Report No. AECL-(1986).

  23. Z.L. Pan, I.G. Ritchie, M.P. Puls, J. Nucl. Mater. 228 (1996) 227.

    Article  CAS  Google Scholar 

  24. R.N. Singh, S. Roychowdhury, V.P. Sinha, T.K. Sinha, P.K. De, S. Banerjee, Mater. Sci. Eng. A 374(1) (2004) 342.

    Article  Google Scholar 

  25. Dutton R, Woo C H, Nuttall K, Simpson L A, Puls M P, Hydrogen in Metals, (Pergamon Oxford) 1 (1978) 3C6 1.

  26. R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Metall. Trans. A 8 (1977) 1553.

    Article  Google Scholar 

  27. R.N. Singh, N. Kumar, R. Kishore, S. Roychaudhury, T.K. Sinha, B.P. Kashyap, J. Nucl. Mater. 304 (2002) 189.

    Article  CAS  Google Scholar 

  28. S.S. Kim, Y.S. Kim, J. Nucl. Mater. 279 (2000) 286.

    Article  CAS  Google Scholar 

  29. L.A. Simpson, M.P. Puls, Metall. Trans. A 10 (1979) 1093.

    Article  Google Scholar 

  30. Choubey R, FC-IAEA-02 T1.20.13-CAN-273 (1998) 63.

  31. Sagat S, Puls M P, SMiRT 17, Prague, Czech Republic, (2003): Paper G06–4.

  32. S. Sagat, C.E. Coleman, M. Griffiths, B.J.S. Wilkins, ASTM STP 1245 (1994) 35.

    Google Scholar 

  33. Y.S. Kim, Mater. Sci. Eng. A 468 (2007) 281.

    Article  Google Scholar 

  34. J. Ambler, ASTM STP 824 (1984) 653.

    CAS  Google Scholar 

  35. S.Q. Shi, G.K. Shek, M.P. Puls, J. Nucl. Mater. 218 (1995) 189.

    Article  CAS  Google Scholar 

  36. M.P. Puls, J. Nucl. Mater. 165 (1989) 128.

    Article  CAS  Google Scholar 

  37. S.S. Kim, S.C. Kwon, Y. Suk Kim, J. Nucl. Mater. 273(1) (1999) 52.

    Article  CAS  Google Scholar 

  38. C.E. Coleman, ASTM STP 754 (1984) 393.

    Google Scholar 

  39. L.A. Simpson, C.D. Cann, J. Nucl. Mater. 126 (1984) 70.

    Article  CAS  Google Scholar 

  40. Ambler J, Coleman C, Proc. Second International Congress on Hydrogen in Metals, (1977); Paper 3C10.

  41. Nuttall K, Proc. Second International Congress on Hydrogen in Metals, (1977); Paper 3C7.

  42. J.I. Mieza, G.L. Vigna, G. Domizzi, J. Nucl. Mater. 411 (2011) 150.

    Article  CAS  Google Scholar 

  43. R.N. Singh, P. Ståhle, J.K. Chakravartty, A.A. Shmakov, Mater. Sci. Eng. A 523 (2009) 112.

    Article  Google Scholar 

  44. S. Sunil, A.K. Bind, H.K. Khandelwal, R.N. Singh, J.K. Chakravartty, J. Nucl. Mater. 467 (2015) 273.

    Article  Google Scholar 

  45. M.E. De Las Heras, S.A. Parodi, L.M.E. Ponzoni, J.I. Mieza, S.C. Müller, S.D. Alcantar, G. Domizzi, J. Nucl. Mater. 509 (2018) 600.

    Article  Google Scholar 

  46. S. Sunil, A.K. Bind, H.K. Khandelwal, R.N. Singh, J.K. Chakravartty, J. Nucl. Mater. 466 (2015) 208.

    Article  CAS  Google Scholar 

  47. Shek G K and Seahra H, 18th International Conference on Nuclear Engineering, ICONE18, China (2010), Paper ID - ICONE18–29786.

  48. A.K. Bind, S. Sunil, R.N. Singh (2016), J. Nucl. Mater. 476 (2016) 5.

    Article  CAS  Google Scholar 

  49. Standard test method for measurement of fracture toughness – Designation: ASTM E1820–15.

  50. M. Puls, Metall. Trans. A 19 (1988) 1507.

    Article  Google Scholar 

  51. IAEA-TECDOC-1410, Vienna: IAEA, 2004.

  52. Yuan Gou, Yanrong Li, Yanzhang Liu, Hongtong Chen, Shihao Ying, Mater. Des. 30 (2009) 1231.

    Article  CAS  Google Scholar 

  53. R.N. Singh, P. Ståhle, A.R. Massih, A.A. Shmakov, J. Alloy. Compd. 436 (2007) 150.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Madangopal Krishnan, former Director, Materials Group, for his constant support and encouragement. Technical assistance provided by Shri Sandeep A. Chandanshive of MMD is acknowledged. This work was funded under XII plan project No. XII-N-R&D2501. Part of this work has been compiled in the form of BARC Report No. BARC/2021/E/007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Rule of Mixture for Prediction of \({\varvec{V}}_{{{\varvec{DHC}}}}^{{\varvec{D}}}\) and \({\varvec{V}}_{{{\varvec{DHC}}}}^{{\varvec{H}}} /{\varvec{V}}_{{{\varvec{DHC}}}}^{{\varvec{D}}}\).

As mentioned in subsection 4.2, when HR is equal to TSSD, all the HR would be in solution and there would be no deuterium in solution. When TSSD is more than the HR, both hydrogen and deuterium would be in solution. In this case, hydrogen and deuterium present in the solution would be HR and TSSD-HR, respectively. As per the rule of mixture, the \({V}_{DHC}^{D}\) would be governed by hydrogen and deuterium present in solution as a fraction of TSSD.

Let us assume a temperature such that TSSD ≥ HR.

Hydrogen in solution as a fraction of TSSD = HR/TSSD

Deuterium in solution as a fraction of TSSD = (TSSD-HR)/TSSD

So, the predicted \({V}_{DHC}^{D}\) in terms of \({V}_{DHC}^{H}\) would be given by:

$$\left( {V_{DHC}^{D} } \right)_{P} = \frac{{H_{R} }}{TSSD} \times V_{DHC}^{H} + \frac{{TSSD - H_{R} }}{TSSD} \times \frac{{V_{DHC}^{H} }}{\surd 2}$$
(A1)

And predicted \({V}_{DHC}^{H}/{V}_{DHC}^{D}\) would be given by:

$$\left( {\frac{{V_{DHC}^{H} { }}}{{V_{DHC}^{D} { }}}} \right)_{P} = \frac{{V_{DHC}^{H} { }}}{{\frac{{H_{R} }}{TSSD} \times V_{DHC}^{H} { } + \frac{{TSSD - H_{R} }}{TSSD} \times \frac{{V_{DHC}^{H} { }}}{\surd 2}}}$$
$$\left( {\frac{{V_{DHC}^{H} { }}}{{V_{DHC}^{D} { }}}} \right)_{P} = \frac{1}{{\frac{{H_{R} }}{TSSD} + \frac{{TSSD - H_{R} }}{TSSD} \times \frac{1}{\surd 2}}}$$
(A2)

Equation (A2) can also be written as follows:

$$\left( {\frac{{V_{DHC}^{H} { }}}{{V_{DHC}^{D} { }}}} \right)_{P} = \frac{1}{{\frac{{H_{R} }}{TSSD}\left( {1 - \frac{1}{\sqrt 2 }} \right) + \frac{1}{\sqrt 2 }}}$$
(A3)

The values of TSSD were obtained from Eq. A4 [23]. The TSSD at 202, 250 and 283 °C is 14, 28 and 50 Wppm, respectively.

$${\text{C}}^{{{\text{TSSD}}}}_{{\text{H}}} = { 8}.0{8}0{\text{ x 1}}0^{{4}} {\text{x exp}}[ - {3452}0/{\text{RT}}]{\text{TSSD}}$$
(A4)

It must be noted that Equations (A1) to (A3) are applicable only when TSSD ≥ HR. When TSSD < HR, only hydrogen would be in solution, and hence, the \({V}_{DHC}^{D}\) would be fully controlled by residual hydrogen present in the form of solution and \({V}_{DHC}^{D}\) is going to be same as \({V}_{DHC}^{H}\) and \({V}_{DHC}^{H}/{V}_{DHC}^{D}\) would be one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bind, A.K., Sunil, S. & Singh, R.N. Effect of Hydrogen Isotopes on Delayed Hydride Cracking Behavior of Zr-2.5Nb Pressure Tube Material. Trans Indian Inst Met 75, 2767–2775 (2022). https://doi.org/10.1007/s12666-022-02647-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02647-w

Keywords

Navigation