Skip to main content

Advertisement

Log in

Microstructural and Mechanical Characterization of Chromium Coating Deposed on Carbon Fibers

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, plain weave carbon fibers fabric T700SC was electrolytically coated with chromium layer. The effect of the bath parameters such as current density and pH on the coating thickness, morphology, and nanoindentation property of the chromium deposited layer was investigated. Modified Hummer’s method was used to improve the low surface polarity of the carbon fibers and make an adherent coating. The results show that the surface morphology of the chromium coating depend on the bath solution. Herein, the results reveal that a fine uniform chromium coating of around 15.4 μm can be achieved at 0.321 A/cm2 and pH = 2.9 for 60 min. Acordingly, a hardness and elastic modulus of 6 GPa and 262 GPa are obtained, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

E c * :

Composite reduced elastic modulus (GPa)

E f * :

Film reduced elastic modulus (GPa)

E s * :

Substrate reduced elastic modulus (GPa)

h :

Indenter displacement (nm)

t :

Film thickness (nm)

ψ :

Effective semi-angle of an equivalent conical indenter (°)

α i :

Fitting parameters according to the weight functions

χ :

Fitting parameters according to the weight functions

References

  1. Zhang Y, Yan L, Miao M, Wang Q, and Wu G, Mater Des 86 (2015) 872 doi: https://doi.org/10.1016/j.matdes.2015.08.015.

    Article  CAS  Google Scholar 

  2. Beronska N, Izdinsky K, Stefanik P, Kudela S, Simancik F, Vavra I, and Krizanova Z, Kovove Mater 49 (2011) 427 doi: https://doi.org/10.4149/km_2011_6_427.

    Article  CAS  Google Scholar 

  3. Rohatgi P K, Tiwari V, and Gupta N, J Mater Sci 41 (2006) 7232 doi: https://doi.org/10.1007/s10853-006-0915-9.

    Article  CAS  Google Scholar 

  4. Calderon N R, Voytovych R, Narciso J, and Eustathopoulos N, J Mater Sci 45 (2010) 2150 doi: https://doi.org/10.1007/s10853- 009-3909-6.

    Article  CAS  Google Scholar 

  5. Asano K, Mater Trans 58 (2017) 906 doi: https://doi.org/10.2320/matertrans.M2017023.

    Article  Google Scholar 

  6. Knowles A J, Jiang X, Galano M, and Audebert F, J Alloys Compd 615 (2014) S401 doi: https://doi.org/10.1016/j.jallcom.2014.01.134.

    Article  CAS  Google Scholar 

  7. Matsunaga T, Matsuda K, Hatayama T, Shinozaki K, and Yoshida M, Compos Part Appl Sci Manuf 38 (2007) 1902 doi: https://doi.org/10.1016/j.compositesa.2007.03.007.

    Article  CAS  Google Scholar 

  8. Zhang J, Liu S, Zhang Y, Dong Y, Lu Y, and Li T, J Mater Process Technol 226 (2015) 78 doi: https://doi.org/10.1016/j.jmatprotec.2015.06.040

    Article  CAS  Google Scholar 

  9. Liang J, Wu C, Ping H, Wang M, and Tang W, Metals 10 (2020) 1212 doi: https://doi.org/10.3390/met10091212.

    Article  CAS  Google Scholar 

  10. Li S, Qi L, Zhang T, Ju L, and Li H, Micron 101 (2017) 170 doi: https://doi.org/10.1016/j.micron.2017.07.004.

    Article  CAS  Google Scholar 

  11. Gomzin A I, Gallyamova R F, Galyshev S N, Paramonov R M, Zaripov N G, and Musin F F, IOP Conf Ser Mater Sci Eng 537 (2019) 022057 doi: https://doi.org/10.1088/1757-899X/537/2/022057.

    Article  CAS  Google Scholar 

  12. Abdel O Gawad, Abou Tabl M H, Abdel Hamid Z, and Mostafa S F, Surf Coat Technol 201 (2006) 1357 doi: https://doi.org/10.1016/j.surfcoat.2006.02.001.

  13. Bard S, Schönl F, Demleitner M, and Altstädt V, Polymers 11 (2019) 823 doi: https://doi.org/10.3390/polym11050823.

    Article  CAS  Google Scholar 

  14. Peng X, Huang Y, Sun X, Han X, and Fan R, J Mater Sci Mater Electron 30 (2019) 7226 doi: https://doi.org/10.1007/s10854-019-01014-8.

    Article  CAS  Google Scholar 

  15. Kumar S, Pande S, and Verma P, Int J Curr Eng Technol 5 (2015) 4.

    CAS  Google Scholar 

  16. Kaur M, Kaur H, and Kukkar D, in (Bikaner, India, 2018), p. 030180 doi: https://doi.org/10.1063/1.5032515.

  17. Tricoteaux A, Duarte G, Chicot D, Le Bourhis E, Bemporad E, and Lesage J Mech Mater 42 (2010) 166 doi:https://doi.org/10.1016/j.mechmat.2009.11.016

    Article  Google Scholar 

  18. Leyland A, Matthews A, Wear 246 (2000) 1 doi:https://doi.org/10.1016/s0257-8972(99)00441-7

    Article  CAS  Google Scholar 

  19. Batista J C A, Godoy C, Pintaúde G, Sinatora A, and Matthews A, Surf Coat Technol 174 (2003) 891 doi:https://doi.org/10.1016/s0257-8972(03)00351-7

  20. Oliver W C, Pharr G M, J Mater Res 7 (1992) 1564 doi:https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  21. Sheng-Rui J, Guo-Ju C, Ting-Chun L, Nanoscale Res Lett 5 (2010) 935 doi: https://doi.org/10.1007/s11671-010-9582-5.

    Article  CAS  Google Scholar 

  22. Chudoba T, Schwarzer N, and Richter F, Surf Coat Technol 154 (2002) 140 doi:https://doi.org/10.1016/s0257-8972(02)00016-6

    Article  CAS  Google Scholar 

  23. Cleymand F, Ferry O, Kouitat R, Billard A, and Von Stebut J, Surf Coat Technol 200 (2005) 890 doi:https://doi.org/10.1016/j.surfcoat.2005.02.086

    Article  CAS  Google Scholar 

  24. Huajian G, Cheng-Hsin C, and Jin L, Int J Solids Struct 29 (1992) 2471 doi:https://doi.org/10.1016/0020-7683(92)90004-d

    Article  Google Scholar 

  25. Menčík J, Munz D, Quandt E, Weppelmann E R, and Swain M V, J Mater Res 12 (1997) 2475 doi:https://doi.org/10.1557/jmr.1997.0327

    Article  Google Scholar 

  26. Perriot A, Barthel E, J Mater Res 19 (2004) 600 doi:https://doi.org/10.1557/jmr.2004.19.2.600.

    Article  CAS  Google Scholar 

  27. Antunes J M, Fernandes J V, Sakharova N A, Int J Solids Struct 44 (2007) 8313 doi:https://doi.org/10.1016/j.ijsolstr.2007.06.015

    Article  Google Scholar 

  28. Doerner M F, and Nix W D, J Mater Res 1 (1986) 601 doi:https://doi.org/10.1557/jmr.1986.0601

    Article  Google Scholar 

  29. Bec S, Tonck A, and Loubet J.-L, Philos Mag 86 (2006) 5347 doi: https://doi.org/10.1080/14786430600660856.

    Article  CAS  Google Scholar 

  30. Gupta S, Ramamurthy P C, and Madras G, Polym Chem 2 (2011) 221 doi: https://doi.org/10.1039/c0py00270d

    Article  CAS  Google Scholar 

  31. Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, 2004 ISBN: 978–0–470–09307–8.

  32. Larkin P, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, (2017) ISBN: 978–0–12–804162–8.

  33. Brisdon A, Kazuo Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th Edn Wiley, 2009, p.424 .(Hardback) ISBN 978–0–471–74493–1, Wiley Online Library (2010).

  34. Jr Workman J, Weyer L, Practical Guide to Interpretive Near-Infrared Spectroscopy, CRC Press, Boca Raton (2007) ISBN: 978-0-429-11957-6.

  35. Jacox M E, J Phys Chem Ref Data 32 (2003) 1 doi: https://doi.org/10.1063/1.1497629.

    Article  CAS  Google Scholar 

  36. Thakur and Karak N, Carbon 50 (2012) 5331. doi:https://doi.org/10.1016/j.carbon.2012.07.023.

  37. Aissat S, Iost A, Guillemot G, Benarioua Y, and Mechmeche M, Mech Ind 12 (2011) 379 doi:https://doi.org/10.1051/meca/2011132.

    Article  CAS  Google Scholar 

  38. Lausmann GA, Surf Coat Technol 86-87 (1996) 814-820 doi:https://doi.org/10.1016/s0257-8972(96)02973-8.

    Article  Google Scholar 

  39. Cosset F, Contoux G, Celerier A, and Machet J, Surf Coat Technol 79 (1996) 25 doi: https://doi.org/10.1016/0257-8972(95)02454-9.

    Article  CAS  Google Scholar 

  40. Aubert A, Danroc J, Gaucher A, and Terrat J P, Thin Solid Films 126 (1985) 61 doi:https://doi.org/10.1016/0040-6090(85)90175-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani May.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhammouda, S.E., May, A., Benabid, Y. et al. Microstructural and Mechanical Characterization of Chromium Coating Deposed on Carbon Fibers. Trans Indian Inst Met 75, 2683–2690 (2022). https://doi.org/10.1007/s12666-022-02557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02557-x

Keywords

Navigation