Skip to main content
Log in

Radiation Damage Behaviour of a Zirconium Alloy Used in Nuclear Industry

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Zirconium alloys used in the nuclear reactors experience high-energy neutron irradiation during service leading to alteration of the microstructure. Effect of irradiation on the microstructure in Zr alloys includes creation of point defects and their evolution resulting in formation of dislocation loops. Alteration of microstructure results in degradation of mechanical properties and dimensional changes in Zr alloys. Ion irradiation is traditionally being used as surrogate of neutron irradiation for simulation of radiation damage in structural materials in a shorter time scale. Samples of Zircaloy were irradiated with high-energy proton beam. Microstructures of the irradiated samples were characterized to determine the density of point defects and dislocations. Fraction of dislocation densities related to <a>- and <c>-type loops were determined from X-ray line profile analysis. Mechanical properties of the irradiated samples were determined using tensile tests and nanoindentation. Tensile properties were correlated with the dislocation densities of the irradiated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chakravartty J K, Kapoor R, Sarkar A, Banerjee S, J. ASTM Int. 7 (2010) 103003.

    Article  Google Scholar 

  2. Carpenter G J C, and Northwood D O, J. Nucl. Mater. 56 (1975) 260.

    Article  CAS  Google Scholar 

  3. Howe L M, and Thomas W R, J. Nucl. Mater. 3 (1960) 248.

    Article  Google Scholar 

  4. Topping, M., Harte, A., Ungar, H. T., Race, C., Dumbill, S., Frankel, P., and Preuss, M., J. Nucl. Mater., 514 (2019) 358.

    Article  CAS  Google Scholar 

  5. Tian J, Feng Q, Zheng J, Liu X, and Zhou W, J. Nucl. Mater. 551 (2021) 152920.

    Article  CAS  Google Scholar 

  6. Was G, Fundamentals of Radiation Materials Science: Metals and Alloys, Second Edition (2016).

  7. Was G S, J. Mater. Res. 30 (2015) 1158.

    Article  CAS  Google Scholar 

  8. Wang P, Bowman J, Bachhav M, Kammenzind B, and Was G, J. Nucl. Mater. 557 (2021) 153281.

    Article  CAS  Google Scholar 

  9. Oliver W, and Pharr G, J. Mater. Res. 7 (1992) 1564.

    Article  CAS  Google Scholar 

  10. Olsen J V, Kirkegaard P, Pedersen N J, and Eldnep M, Physica Status Solidi C 4 (2007) 4004.

    Article  CAS  Google Scholar 

  11. Yao Z, Daymond M, Di S, and Idress Y, Appl. Sci. 7 (2017) 854.

    Article  Google Scholar 

  12. Liu S-M, Han W-Z, Tungsten 3 (2021) 470.

    Article  Google Scholar 

  13. Saidi P, Topping M, Dai C, Long F, Beland L K, and Daymond M R, J. Nucl. Mater. 543 (2021) 152478.

    Article  CAS  Google Scholar 

  14. Hulse R, and Race C P, J. Nucl. Mater. 546 (2021) 152752.

    Article  CAS  Google Scholar 

  15. Mukherjee P, Sarkar A, Barat P, Bandyopadhyay S K, and Mitra M K, Acta Mater. 52 (2004) 5687.

    Article  CAS  Google Scholar 

  16. Ungar T, Scripta Mater. 51 (2004) 777.

    Article  CAS  Google Scholar 

  17. Balogh L, J. Appl. Crystallogr. 49 (2016) 2184.

    Article  CAS  Google Scholar 

  18. Ungar T, Ribarik G, Topping M, Jones R M A, and Preuss M, J. Appl. Crystallogr. 54 (2021) 803.

    Article  CAS  Google Scholar 

  19. Ungar T, Franke P, Ribarik G, Race C P, and Preuss M, J. Nucl. Mater. 550 (2021) 152945.

    Article  CAS  Google Scholar 

  20. Topping M, Ungar T, Race C P, Harte A, and Preuss M, Acta Mater. 145 (2018) 255.

    Article  CAS  Google Scholar 

  21. Seymour T, Frankel P, Balogh L, Ungar T, and Preuss M, Acta Mater. 126 (2017) 102.

    Article  CAS  Google Scholar 

  22. Groma I, Szenthe I, Odor E, Joni B, and Hozer Z, J. Appl. Crystallogr. 54 (2021) 280.

    Article  CAS  Google Scholar 

  23. Sarkar A, and Murty K L, J. Nucl. Mater. 456 (2015) 287.

    Article  CAS  Google Scholar 

  24. Dunlop J W, Brechet Y J M, Legras L, and Estrin Y, Mater. Sci. Eng. A 443 (2007) 77.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support, guidance and encouragement received from Dr. Srikumar Banerjee for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kumar, A. & Mukherjee, S. Radiation Damage Behaviour of a Zirconium Alloy Used in Nuclear Industry. Trans Indian Inst Met 75, 941–948 (2022). https://doi.org/10.1007/s12666-022-02539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02539-z

Keywords

Navigation