Skip to main content
Log in

Displacive Phase Transformations in Nanometric Dimension

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work delves into the role of parent phase size on occurrence of displacive phase transformation with emphasis on transformation in nanometric dimension. Beta phase with compositions suitable for displacive martensitic and omega phase transformations has been generated in different length scales in a Zr-1 wt.% Nb alloy through heat treatment. The beta phase distribution was in the form of (i) patches at grain boundaries and tri-junctions and (ii) needle-shaped intragranular precipitates. The transformation inside the beta phase following quenching has been probed by transmission electron microscopy. Very fine beta precipitates remained untransformed despite their compositions falling in the domain of martensitic, omega phase transformations. The parent phase size dependency was more prevalent in the case of martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hehemann R F, Can Metall Q 11 (1972) 201.

    Article  CAS  Google Scholar 

  2. Menon S K, Banerjee S, and Krishnan R, Metall Trans A 9 (1978) 1213.

    Article  Google Scholar 

  3. Grad G B, Guillermet A F, Pieres J J, and Cuello G J, Z Metallkd 87 (1996) 721.

    CAS  Google Scholar 

  4. Aurelio G, Guillermet A F, Cuello G J, and Campo J, Metall Trans A 32 (2001) 1903.

    Article  Google Scholar 

  5. Aurelio G, Guillermet A F, Cuello G J, and Campo J, J Alloys Comp 335 (2002) 132.

    Article  CAS  Google Scholar 

  6. Srivastava D, Madangopal K, Banerjee S, and Ranganathan S, Acta Mater 41 (1993) 3445.

    Article  CAS  Google Scholar 

  7. Banerjee S, and Krishnan R, Acta Metall 19 (1971) 1317.

    Article  CAS  Google Scholar 

  8. Banerjee S, and Krishnan R, Metall Trans A 4 (1973) 1811.

    Article  CAS  Google Scholar 

  9. Mackenzie J K, and Bowles J S, Acta Metall 5 (1957) 137.

    Article  Google Scholar 

  10. Williams A J, Cahn R W, and Barrett C S, Acta Metall 2 (1954) 117.

    Article  CAS  Google Scholar 

  11. Gaunt P, and Christian J W, Acta Metall 7 (1959) 529.

    Article  CAS  Google Scholar 

  12. Sandvik B P J, and Wayman C M, Metall Trans A 14 (1983) 823.

    Article  CAS  Google Scholar 

  13. Sandvik B P J, and Wayman C M, Metall Trans A 14 (1983) 835.

    Article  CAS  Google Scholar 

  14. Krauss G, and Marder A R, Metall Trans A 2 (1971) 2343.

    Article  CAS  Google Scholar 

  15. Hatt B A, and Roberts J A, Acta Metall 8 (1960) 575.

    Article  CAS  Google Scholar 

  16. Hanson C G, Rivlin V G, and Hatt B A, J Nucl Mater 12 (1964) 83.

    Article  CAS  Google Scholar 

  17. Stewart D, Hatt B A, and Roberts J A, Brit J Appl Phys 16 (1965) 1081.

    Article  CAS  Google Scholar 

  18. Sass S L, Acta Metall 17 (1969) 813.

    Article  CAS  Google Scholar 

  19. Chaturvedi M, and Singh R N, J Less-Common Metals 18 (1969) 71.

    Article  CAS  Google Scholar 

  20. Hickman B S, J Mater Sci 4 (1969) 554.

    Article  CAS  Google Scholar 

  21. Hickman B S, Trans TMS-AIME 245 (1969) 1329.

    CAS  Google Scholar 

  22. Dawson C W, and Sass S L, Metall Trans A 1 (1970) 2225.

    Article  CAS  Google Scholar 

  23. Goasdoue C, Ho P S, and Sass S L, Acta Metall 20 (1972) 725.

    Article  CAS  Google Scholar 

  24. Sass S L, J Less-Common Metals 28 (1972) 157.

    Article  CAS  Google Scholar 

  25. Williams J C, Critical Review in Titanium Science and Technology, Plenum, New York (1973) p 1433.

    Google Scholar 

  26. Cook H E, Acta Metall 22 (1974) 239.

    Article  CAS  Google Scholar 

  27. Sikka S K, Vohra Y K, and Chidambaram R, Prog Mater Sci 27 (1982) 245.

    Article  CAS  Google Scholar 

  28. Fontaine D, Metall Trans A 19 (1988) 169.

    Article  Google Scholar 

  29. Srivastava D, Mukhopadhyay P, Ramadasan E, and Banerjee S, Metall Trans A 24 (1993) 495.

    Article  Google Scholar 

  30. Guillermet A F, Z Metallkd 82 (1991) 478.

    CAS  Google Scholar 

  31. Cuello G J, Guillermet A F, Grad G B, Mayer R E, and Granada J R, J Nucl Mater 218 (1995) 236.

    Article  CAS  Google Scholar 

  32. Grad G B, Pieres J J, Guillermet A F, Cuello G J, Granada J R, and Mayer R E, Physica B 213 & 214 (1995) 433.

    Article  Google Scholar 

  33. Grad G B, Guillermet A F, and Granada J R, Z Metallkd 87 (1996) 726.

    CAS  Google Scholar 

  34. Garces J E, Grad G B, Guillermet A F, and Sferco S J, J Alloys Comp 287 (1999) 6.

    Article  CAS  Google Scholar 

  35. Garces J E, Grad G B, Guillermet A F, and Sferco S J, J Alloys Comp 289 (1999) 1.

    Article  CAS  Google Scholar 

  36. Aurelio G, and Guillermet A F, J Alloys Comp 292 (1999) 31.

    Article  CAS  Google Scholar 

  37. Aurelio G, and Guillermet A F, Z Metallkd 91 (2000) 35.

    CAS  Google Scholar 

  38. Aurelio G, and Guillermet A F, J Alloys Comp 298 (2000) 30.

    Article  CAS  Google Scholar 

  39. Benites G M, Guillermet A F, Cuello G J, and Campo J, J Alloys Comp 299 (2000) 183.

    Article  CAS  Google Scholar 

  40. Benites G M, and Guillermet A F, J Alloys Comp 302 (2000) 192.

    Article  CAS  Google Scholar 

  41. Easterling K E, and Swann P R, Acta Metall 19 (1971) 117.

    Article  CAS  Google Scholar 

  42. Easterling K E, and Miekk-Oja H M, Acta Metall 15 (1967) 1133.

    Article  CAS  Google Scholar 

  43. Massalski T B, Okamoto H, Subramanian P R, and Kacprzak L, Binary Alloy Phase Diagrams, ASM International, Materials Park (1990) p 1125.

  44. Burgers W G, Physica 1 (1934) 561.

    Article  CAS  Google Scholar 

  45. Dahmen U, Acta Metall 30 (1982) 63.

    Article  CAS  Google Scholar 

  46. Banerjee S, Vijayakar S J, and Krishnan R, J Nucl Mater 62 (1976) 229.

    Article  CAS  Google Scholar 

  47. Luo C P, and Weatherly G C, Metall Trans A 19 (1988) 1153.

    Article  Google Scholar 

  48. Ham F S, Quart J Appl Math 17 (1959) 137.

    Article  Google Scholar 

  49. Horvay G, and Cahn J W, Acta Metall 9 (1961) 695.

    Article  CAS  Google Scholar 

  50. Sankaran R, and Laird C, Acta Metall 22 (1974) 957.

    Article  CAS  Google Scholar 

  51. Perkins A J, Yaffe P E, and Hehemann R F, Metallography 4 (1971) 303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Neogy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogy, S., Srivastava, D. Displacive Phase Transformations in Nanometric Dimension. Trans Indian Inst Met 75, 879–885 (2022). https://doi.org/10.1007/s12666-021-02505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02505-1

Keywords

Navigation