Skip to main content
Log in

Thermodynamics of Binary bcc and fcc Phases for Exclusive Second-Neighbour Pair Interactions Using Cluster Variation Method: Analytical Solutions

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Background

In the framework of cluster expansion—cluster variation methods (CE - CVM), the equilibrium values of the microscopic state variables called correlation functions (CFs) can be obtained by minimization of the Helmholtz energy. This involves solving the nonlinear equilibrium equations using numerical techniques. As an exception, Guggenheim obtained an analytical solution for the pair CF in the pair approximation of quasi-chemical theory for a binary alloy.

Results

In this communication, analytical solutions for the CFs for the case of exclusive second neighbour pair interactions in binary A2 & B32 phases and A1 & L11 phases respectively under tetrahedron and tetrahedron–octahedron approximations of CVM are obtained as functions of the corresponding energy coefficient, temperature, and composition.

Results obtained by results in the previous section and a few new results

Further, analytical expressions for the phase boundaries in phase separating and ordering systems have been obtained. Apart from these, thermodynamic quantities such as heat capacities have also been evaluated. In addition, the effect of composition and temperature dependence of the energy coefficient on the phase boundary is also discussed.

Application

For the selected composition, the solution of CF reduces to a simple rational function. Taking this as a guide, the coefficients of the polynomials used to approximate the CFs are expressed as rational functions, which was discussed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kikuchi R, Phys Rev 81 (1951) 988. https://doi.org/10.1103/PhysRev.81.988.

    Article  Google Scholar 

  2. Sanchez J M, Ducastelle F, Gratias D, Phys A Stat Mech Appl 128 (1984) 334. https://doi.org/10.1016/0378-4371(84)90096-7.

    Article  Google Scholar 

  3. Inden G, in Phase Transformations in Materials, Ch. 8, (ed) Kostorz G, Wiley-Blackwell, 2005, p. 519. https://doi.org/10.1002/352760264X.ch8.

  4. Kikuchi R, J Chem Phys 60 (1974) 1071. https://doi.org/10.1063/1.1681115.

    Article  CAS  Google Scholar 

  5. Xingjun L, Shiming H, Rongwen Y, Calphad 19 (1995) 81. https://doi.org/10.1016/0364-5916(95)00009-4.

    Article  CAS  Google Scholar 

  6. Pretti M, J Stat Phys 119 (2005) 659. https://doi.org/10.1007/s10955-005-4426-x.

    Article  Google Scholar 

  7. Kiyokane N, Mohri T, Mater Trans 52 (2011) 428. https://doi.org/10.2320/matertrans.MBW201011.

    Article  CAS  Google Scholar 

  8. Anoune M, Aouachria Z, J Phase Equil Diffus 32 (2011) 17. https://doi.org/10.1007/s11669-010-9821-6.

    Article  CAS  Google Scholar 

  9. Sanchez J M, De Fontaine D, Phys Rev B 17 (1978) 2926. https://doi.org/10.1103/PhysRevB.17.2926.

    Article  Google Scholar 

  10. Yuille A L, Neural Comput 14 (2002) 1691. https://doi.org/10.1162/08997660260028674.

    Article  CAS  Google Scholar 

  11. Lele S, Sarma B N, J Mater Sci 44 (2009) 2334. https://doi.org/10.1007/s10853-008-3197-6.

  12. Harvey J P, Eriksson G, Orban D, Chartrand P, Am J Sci 313 (2013) 199. https://doi.org/10.2475/03.2013.02.

    Article  CAS  Google Scholar 

  13. Guggenheim E A, Mixtures: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures Solutions and Alloys, Clarendon Press (1952).

  14. Sarma B N, Shah S N, Kumar M, Lele S, Int J Mater Res 103 (2012) 1188. https://doi.org/10.3139/146.110755.

    Article  CAS  Google Scholar 

  15. Gorrey R P, Jindal V, Sarma B N, Lele S, Calphad 71 (2020) 101773. https://doi.org/10.1016/j.calphad.2020.101773.

    Article  CAS  Google Scholar 

  16. Laughlin D E, Soffa W A, Acta Mater 145 (2018) 49. https://doi.org/10.1016/J.ACTAMAT.2017.11.037.

    Article  CAS  Google Scholar 

  17. Sluiter M, Kawazoe Y, Phys Rev B 59 (1999) 3280. https://doi.org/10.1103/PhysRevB.59.3280.

    Article  CAS  Google Scholar 

  18. Kusoffsky A, Sundman B, J Phys Chem Solids 59 (1998) 1549. https://doi.org/10.1016/S0022-3697(98)00066-3.

    Article  CAS  Google Scholar 

  19. Schön C, Inden G, Acta Mater 46 (1998) 4219. https://doi.org/10.1016/S1359-6454(98)00096-2.

  20. Lupis C H P, Chemical Thermodynamics of Materials, North-Holland (1983).

  21. Balogh Z, Schmitz G, in Physical Metallurgy, 5th edition, (ed) Laughlin D E, Hono K, Elsevier, 2014, Ch. 5, p. 387. https://doi.org/10.1016/B978-0-444-53770-6.00005-8.

  22. Oates W A, Zhang F, Chen S L, Chang Y A, Phys Rev B 59 (1999) 11221–11225. https://doi.org/10.1103/PhysRevB.59.11221.

    Article  CAS  Google Scholar 

  23. Ferreira L G, Mbaye A A, Zunger A, Phys Rev B 35 (1987) 6475. https://doi.org/10.1103/PhysRevB.35.6475.

    Article  CAS  Google Scholar 

  24. Gajdics B, Tomán J J, Erdélyi Z, Calphad 67 (2019) 101665. https://doi.org/10.1016/J.CALPHAD.2019.101665.

    Article  CAS  Google Scholar 

  25. Abe T, Ogawa K, Hashimoto K, Calphad 38 (2012) 161. https://doi.org/10.1016/j.calphad.2012.06.006.

    Article  CAS  Google Scholar 

  26. Hillert M, J Phase Equil 15 (1994) 35. https://doi.org/10.1007/BF02667679.

    Article  CAS  Google Scholar 

  27. van de Walle A, Ceder G, Rev Modern Phys 74 (2002) 11. https://doi.org/10.1103/RevModPhys.74.11.

    Article  Google Scholar 

  28. Asta M, McCormack R, de Fontaine D, Phys Rev B 48 (1993) 748. https://doi.org/10.1103/PhysRevB.48.748.

    Article  CAS  Google Scholar 

  29. Kaptay G, Calphad 56 (2017) 169. https://doi.org/10.1016/j.calphad.2017.01.002.

    Article  CAS  Google Scholar 

  30. Kaptay G, Calphad 44 (2014) 81. https://doi.org/10.1016/J.CALPHAD.2013.08.007.

    Article  CAS  Google Scholar 

  31. Gorrey R P, Jindal V, Sarma B N, Lele S, Comput Materi Sci 186 (2021) 109746. https://doi.org/10.1016/j.commatsci.2020.109746.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad Gorrey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

At the phase boundary,

$$\begin{aligned} \begin{aligned} \varDelta \psi&=-x_{\text{A}}x_\text{B}\left( \frac{\partial }{\partial \xi } \left( \frac{\partial G_{B32}^{\text{mix}}/\text{R}T}{\partial x_\text{B}}\right) _\xi \right) _{x_\text{B}} \frac{{ {d}}\xi }{{{d}}x_\text{B}}\\&=-\frac{x_{\text{A}}x_\text{B}}{2\xi } \left( \frac{\partial }{\partial \xi } \left( \frac{\partial G_{B32}^{\text{mix}}/\text{R}T}{\partial x_\text{B}}\right) _\xi \right) _{x_\text{B}} \frac{{ {d}}\xi ^2}{{ {d}}x_\text{B}} \end{aligned} \end{aligned}$$
(58)

At the phase boundary, the differential terms in the numerator as well as the denominator in Eq. (58) vanish, making their ratio indeterminate. It can be evaluated by considering

$$\begin{aligned} \frac{{ {d}}\xi ^2}{{ {d}}x_\text{B}}=2\xi \frac{{ {d}}\xi }{{{d}}x_\text{B}}=-2\xi \left( \frac{\partial }{\partial x_\text{B}} \left( \frac{\partial G_{B32}^{\text{mix}}}{\partial \xi }\right) _{x_\text{B}}\right) _\xi \Big / \left( \frac{\partial ^2 G_{B32}^{ \text{mix}}}{\partial \xi ^2}\right) _{x_\text{B}} \end{aligned}$$
(59)

The derivatives in Eq. (44) are evaluated from Eq. (17) and substituted in Eq.  (44) which after simplification becomes

$$\begin{aligned} \frac{{{d}}\xi ^2}{{{d}}x_\text{B}}=-\frac{4u_0 \xi ^2 \left( 1+\left( u_0^2-\xi ^2\right) \left( 1-\eta _2\right) +\eta _2-4 \text{X}/3\right) }{\left( 1-u_0^2\right) \left( \eta _2+u_0^2\left( 1-\eta _2\right) -2\text{X}/3\right) +\xi ^2\left( u_0^2\left( 1-\eta _2\right) -\eta _2+2\text{X}/3\right) } \end{aligned}$$
(60)

where

$$\begin{aligned} \text{X}=\sqrt{\eta _2+\left( 1-\eta _2\right) \left( u_0^2-\eta _2\xi ^2\right) } \end{aligned}$$
(61)

The terms which are independent of \(\xi ^2\) in the denominator of RHS in Eq. (60) together are expanded around \(u_0\) corresponding to its value at the phase boundary, namely \(u_0 = u_{0b}\) (given in Eq. (28)) which yields

$$\begin{aligned} \begin{aligned}&\left( 1-u_{0b}^2\right) \left( \eta _2+u_{0b}^2\left( 1-\eta _2\right) +2\text{X}_b/3\right) -2u_{0b}\left( u_0-u_{0b}\right) \left( u_{0b}^2-\left( 1-u_{0b}^2\right) \left( 1-2\eta _2\right) \right. \\&\quad \left. +\frac{1-\left( 3u_{0b}^2-2\eta _2 \xi ^2\right) \left( 1-\eta _2\right) -3\eta _2}{3\text{X}_b}\right) +\text{O}\left( \left( u_0-u_{0b}\right) ^2\right) \end{aligned} \end{aligned}$$

X\(_b\) in the above expression corresponds to the value of X at \(u_0\) = \(u_{0b}\). Expanding the terms which are independent of (\(u_0 - u_{0b}\)) in the above expression together around \(\xi\) = 0 and with substitution of boundary condition corresponding to \(u_0\) from Eq. (28) yields

$$\begin{aligned} \frac{5}{18}\xi ^2\eta _2+\text{O}\left( \xi ^4\right) +\frac{5}{9} u_{0b}\left( u_0-u_{0b}\right) +\text{O}\left( \left( u_0-u_{0b}\right) ^2\right) \end{aligned}$$

Substituting the above expression in Eq. (60) and cancelling \(\xi ^2\) from the numerator and denominator

$$\begin{aligned} \frac{{{d}}\xi ^2}{{{d}}x_\text{B}}=-\frac{4u_0 \left( 1+\left( u_0^2-\xi ^2\right) \left( 1-\eta _2\right) +\eta _2-4 \text{X}/3\right) }{-\frac{13}{18}\eta _2+u_0^2\left( 1-\eta _2\right) -2\text{X}/3+\text{O}\left( \xi ^2\right) +\frac{5}{9}u_{0b}\frac{\left( u_0-u_{0b}\right) }{\xi ^2}+\frac{\left( u_0-u_{0b}\right) }{\xi ^2}\text{O}\left( \left( u_0-u_{0b}\right) \right) } \end{aligned}$$
(62)

In the limit of \(u_0 \rightarrow u_{0b}\) and \(\xi \rightarrow 0\) corresponding to the phase boundary,

$$\begin{aligned} \left. \frac{\left( u_0-u_{0b}\right) }{\xi ^2}\right| _{u_0 \rightarrow u_{0b},\xi \rightarrow 0}=\frac{du_0}{{{d}}\xi ^2}=\frac{1}{\left( \frac{{{d}}\xi ^2}{du_0}\right) }=\frac{1}{\left( \frac{{{d}}\xi ^2}{2{{d}}x_\text{B}}\right) } \end{aligned}$$
(63)

Substituting from Eq. (63) in Eq. (62), we obtain

$$\begin{aligned} \frac{{{d}}\xi ^2}{{{d}}x_\text{B}}=-\frac{4u_{0b}}{\frac{4+27u_{0b}^2}{18\left( 1-u_{0b}^2\right) }+\frac{u_{0b}}{\left( \frac{{{d}}\xi ^2}{2{{d}}x_\text{B}}\right) }} \end{aligned}$$
(64)

The above equation can be solved for \({{d}}\xi ^2/{{d}}x_\text{B}\) in terms of \(u_{0b}\) to yield

$$\begin{aligned} \frac{{{d}}\xi ^2}{{{d}}x_\text{B}}=\frac{54u_{0b}\left( -1+u_{0b}^2\right) }{4+27u_{0b}^2} \end{aligned}$$
(65)

Substituting from Eq. (65) in Eq. (43) and utilizing the boundary equation, Eq. (28), we get

$$\begin{aligned} \varDelta \psi =\frac{135u_0^2}{2\left( 4+27u_0^2\right) }=\frac{15\left( 4-9\eta _2\right) }{2\left( 16-31\eta _2\right) } \end{aligned}$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorrey, R.P., Jindal, V., Sarma, B.N. et al. Thermodynamics of Binary bcc and fcc Phases for Exclusive Second-Neighbour Pair Interactions Using Cluster Variation Method: Analytical Solutions. Trans Indian Inst Met 75, 1365–1381 (2022). https://doi.org/10.1007/s12666-021-02469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02469-2

Keywords

Navigation