Skip to main content
Log in

Feasibility of Stir Casting Method for Processing Al-6063/Graphite Composite with Desired Microstructure, Mechanical, Flow, and Frictional Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The Al-6063/Graphite composite was processed by the stir casting technique. The graphite was copper-coated using a cementation process and introduced into the matrix at 2.5, 5, and 7.5 wt%. The microstructure and the hardness of the composite were examined. The micrographs showed better particle distribution for the graphite reinforcements up to 5 wt%. Further increment resulted in inhomogeneous particle distribution and increase in % void content. The uniaxial compression test was performed to investigate the plastic flow properties. It was observed that an increase in the graphite reinforcement decreased the flow strength. However, the true fracture strain to failure increased. Furthermore, the effect of graphite reinforcement on the friction factor ‘m’ was analyzed by a ring compression test. The test was performed at various temperatures from 373 to 673 K in the interval of 100 K, including the ambient temperature. It was observed that the graphite reinforcement had a considerable effect on reducing the friction factor during deformation, up to 473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Faleh H, Muna N and Stefanescu F, Adv Mater Res 1128 (2015) 134. https://doi.org/10.4028/www.scientific.net/amr.1128.134.

    Article  Google Scholar 

  2. Gorgantzia E, Gkantou M and Kamaris G S, Eng Struct 227 (2021) 111372. https://doi.org/10.1016/j.engstruct.2020.111372.

    Article  Google Scholar 

  3. Chung D L, J Mater Sci 37 (2002) 1475.

    Article  CAS  Google Scholar 

  4. Alam M T, Arif S, Ansari A H and Alam N, National Conference on Mechanical Engineering-Ideas, Innovations & Initiatives. AMU Aligarh 206 (2016).

  5. Barekar N, TzamtzisS, Dhindaw B K, Patel J, Hari Babu N and Fan Z, J Mater Eng Perform 18 (2009) 1230. https://doi.org/https://doi.org/10.1007/s11665-009-9362-5.

    Article  CAS  Google Scholar 

  6. Etter T, Schulz P, Weber M, Metz J, Wimmler M, Löffler J F and Uggowitzer P J, Mater Sci Eng A 448 (2007) 1. https://doi.org/https://doi.org/10.1016/j.msea.2006.11.088.

    Article  CAS  Google Scholar 

  7. Mahdavi S and Akhlaghi F, Tribol Lett 44 (2011) 1. https://doi.org/https://doi.org/10.1007/s11249-011-9818-2.

    Article  CAS  Google Scholar 

  8. Omrani E, Moghadam A D, Menezes P L and Rohatgi P K, Int J Adv Manuf Technol 83 (2016) 325. https://doi.org/https://doi.org/10.1007/s00170-015-7528-x.

    Article  Google Scholar 

  9. Wang X, Chen G Q, Li B, Wu G H and Jiang D M, J Mater Sci 44 (2009) 4303. https://doi.org/https://doi.org/10.1007/s10853-009-3639-9.

    Article  CAS  Google Scholar 

  10. Ma B, Wang J, Lee T H, Dorris SE, Wen J and Balachandran U, J Mater Sci 53 (2018) 10173. https://doi.org/https://doi.org/10.1007/s10853-018-2336-y.

    Article  CAS  Google Scholar 

  11. Rubinkovskii N A, Shornikov D P, Tenishev A V, Zaluzhnyi A G and Zholnin A G, Glas Ceram 76 (2019) 27. https://doi.org/https://doi.org/10.1007/s10717-019-00126-1.

    Article  CAS  Google Scholar 

  12. Ramanathan A, Krishnan P K and Muraliraja R, J Manuf Process 42 (2019) 213. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.04.017.

    Article  Google Scholar 

  13. Marcinauskas L, Mathew J S, Milieška M, Aikas M and Kalin M, J Alloys Compd (2020). https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154135.

    Article  Google Scholar 

  14. Lin C B, Wang T C, Chang Z C and Chu H Y, J Mater Eng Perform 22 (2013) 94. https://doi.org/https://doi.org/10.1007/s11665-012-0231-2.

    Article  CAS  Google Scholar 

  15. Yadav S, Chichili D R and Ramesh K T, Acta Metall Mater 43 (1995) 4453. https://doi.org/https://doi.org/10.1016/0956-7151(95)00123-D.

    Article  CAS  Google Scholar 

  16. Eshelby J D, Proc R Soc Lond Ser A 241 (1957) 376.

    Article  Google Scholar 

  17. Corbin S F and Wilkinson D S, Acta Metall Mater 42 (1994) 1311.

    Article  CAS  Google Scholar 

  18. Corbin S F and Wilkinson D S, Acta Metall Mater 42 (1994) 1319. https://doi.org/https://doi.org/10.1016/0956-7151(94)90148-1.

    Article  CAS  Google Scholar 

  19. Dilrukshi L W U R and De Silva G I P, J Natl Sci Found Sri Lanka 48 (2020) 305.

    Article  CAS  Google Scholar 

  20. Wang L, Zhou J, Duszczyk J and Katgerman L, Tribol Int 56 (2012) 89. https://doi.org/https://doi.org/10.1016/j.triboint.2012.01.012.

    Article  CAS  Google Scholar 

  21. Faleh H, Noori M, Stefanescu F, Neagu G and Stefan E M, Adv Mater Res 1143 (2017) 64. https://doi.org/10.4028/www.scientific.net/AMR.1143.64.

    Article  Google Scholar 

  22. Ramesh C S and Ahamed A, Wear 271 (2011) 1928. https://doi.org/10.1016/j.wear.2010.12.048.

    Article  CAS  Google Scholar 

  23. Shuvho M B A, Chowdhury M A, Hossain N, Roy B K, Kowser M A and Islam A, SN Appl Sci 2 (2020) 1. https://doi.org/10.1007/s42452-020-2064-1.

    Article  CAS  Google Scholar 

  24. Pai B C and Rohatgi P K, Mater Sci Eng 21 (1975) 161. https://doi.org/https://doi.org/10.1016/0025-5416(75)90211-6.

    Article  CAS  Google Scholar 

  25. Hollomon J H, Trans AIME 31 (1945) 268.

    Google Scholar 

  26. Ludiwik P, Verlag von Julius Spr 32 (1909).

  27. Swift H W, J Mech Phy Solids 1 (1952) 1.

    Article  Google Scholar 

  28. Alipour M, Torabi M A, Sareban M, Lashini H, Sadeghi E, Fazaeli A, Habibi M and Hashemi R, Mech Based Des Struct Mach 48 (2020) 525. https://doi.org/https://doi.org/10.1080/15397734.2019.1633343.

    Article  Google Scholar 

  29. Kwesi Nutor R, Am J Mater Synth Process 2 (2017) 1. https://doi.org/10.11648/j.ajmsp.20170201.11.

  30. Zhang D, Liu B, Li J, Cui M and Zhao S, Friction 8 (2020) 311. https://doi.org/https://doi.org/10.1007/s40544-018-0256-0.

    Article  CAS  Google Scholar 

  31. Male A T, Proc Instn Mech Engrs Rep 8 (1967) 64. https://doi.org/https://doi.org/10.1016/j.triboint.2010.10.002.

    Article  Google Scholar 

  32. Brennan J J and Pask J A, J Am Ceram Soc 51 (1968) 569. https://doi.org/https://doi.org/10.1111/j.1151-2916.1968.tb13324.x.

    Article  CAS  Google Scholar 

  33. Arsenault R J and Shi N, Mater Sci Eng 81 (1986) 175.

    Article  CAS  Google Scholar 

  34. Marshall B and Peterson J, NACA Tech Note 77 (1954) 6.

    Google Scholar 

  35. Jeurgens L P H, Sloof W G, Tichelaar F D and Mittemeijer E J, Thin Solid Films 418 (2002) 89. https://doi.org/10.1016/S0040-6090(02)00787-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rijesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biradar, A., Rijesh, M. Feasibility of Stir Casting Method for Processing Al-6063/Graphite Composite with Desired Microstructure, Mechanical, Flow, and Frictional Properties. Trans Indian Inst Met 75, 407–416 (2022). https://doi.org/10.1007/s12666-021-02428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02428-x

Keywords

Navigation