Skip to main content
Log in

Iron and Nickel Enrichment in Low Grade Chromite Overburden to Produce Ferronickel Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Chromite overburden (COB), considered as a waste material with 46% Fe and 0.8% Ni, is the only source of nickel in India. Iron and nickel from COB were recovered through reduction roasting, magnetic separation and smelting. In sintering, maximum Ni% was achieved at 1.0% S, 10% C inside and 10% C outside of the COB pellet. Ni was, further, enriched by smelting the magnetic fraction of sintered COB. XRD, SEM–EDS and chemical analysis of the feed material and products confirmed enriched Ni content in the ferronickel alloy. With the optimized parameters such as 12 min time, 1.2 basicity and 10% reductant, ferronickel alloy contains 8% Ni and 89% Fe with recovery of 87% Ni. It was possible to produce different grades of ferronickel, varying from 2 to 10% Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mudd G M, Ore Geol.Rev 38 (2010), p.9.

    Article  Google Scholar 

  2. Nickel Institute, Knowledge for a brighter future. https://www.nickelinstitute.org/about-nickel # properties (accessed 4th October 2020)

  3. Mohapatra S, Bohidar S, Pradhan N, Kar R N and Sukla L B, Hydrometallurgy 85 (2007) 1.

    Article  CAS  Google Scholar 

  4. Swain P K, Chaudhury G Y and Sukla L B, Korean J. Chem. Eng 24 (2007) 932.

    Article  CAS  Google Scholar 

  5. Zhu D Q, Cui Y, Vining K, Hapugoda S, Douglas J, Pan J and Zheng G L, Int. J. Miner. Process 106 (2012) 1.

    Google Scholar 

  6. Bhattacharjee S, Dasgupta P, Kar D, Bhattacharjee R N, Ghosal S and Paul A R, Processing of Fines: Proc 2 (2000) 307.

    Google Scholar 

  7. Indian Minerals Yearbook 2018 (Part-II metals and alloys), 57th Edition, Indian Bureau of Mines.

  8. Mishra H and Sahu H B , IJEM ISSN 2231-1319 4 (2013) 287.

    Google Scholar 

  9. Rao R B, Prakash S, Rao G V, Ansari M I and Narasimhan K S, Indian national science academy: Proc (1984) 467.

    Google Scholar 

  10. Leonardou S A, Zafiratos I G and Spathis D, Hydrometallurgy 74 (2004) 259.

    Article  Google Scholar 

  11. Chander S and Sharma V N, Hydrometallurgy 7 (1981) 315.

    Article  CAS  Google Scholar 

  12. Kapure G U, Rao C B , Tathavadkar V D and Sen R, Ironmaking Steelmaking 38 (2011) 590.

    Article  CAS  Google Scholar 

  13. Astuti W andika R and Nurjaman F, Mater. Sci. Eng 285 (2018) 1.

    Google Scholar 

  14. Wang L W, Lü X M, Liu M, You Z X, Lü X W and Bai C G, Int. J. Miner. Metall. Mater 25 (2018) 744.

    Article  CAS  Google Scholar 

  15. Kim J , Dodbiba G , Tanno H, Okaya K , Matsuo S and Fujita T, Minerals Engineering 23 (2010) 282.

    Article  CAS  Google Scholar 

  16. Samal S (2016) J. Cleaner Prod. 1

  17. Swamy Y V, Kar B B and Mohanty J K, Hydrometallurgy 69 (2003) 89.

    Article  CAS  Google Scholar 

  18. Schwertmann U, Schulze D G and Murad E, Soil Sci. Soc. Am. J 46 (1998) 869.

    Article  Google Scholar 

  19. Georgiou D and Papangelakis V G, Hydrometallurgy 49 (1998) 23.

    Article  CAS  Google Scholar 

  20. Bunjaku A, Kekkonen M, Pekkarinen S and Taskinen P (2013) Trans. Inst. Min. Metall .C 122 15.

  21. Chen J, Jak E and Hayes P C, Trans. Inst. Min. Metall., Sect C (2019) 1.

    Google Scholar 

  22. Rodriques F, Pickles C A , Peacey J, Elliott R and Forster J, MDPI Minerals 7 (2017) 1.

    Google Scholar 

  23. Fruehan R (1977) J Metall. Trans. B 279.

  24. Ma P, Lindblom B, Bjorkman B (2005) Scand.J.Metall 22.

  25. Elliott R, Pickles C A and Forster J, Jmmce 4 (2016) 320.

    Article  CAS  Google Scholar 

  26. Donghua H, Jianliang Z, Rui M and Mingming C, Rare Met 30 (2011) 681.

    Article  Google Scholar 

  27. Setiawan I, Harjanto S, Rustandi A and Subagja R, IJET- IJENS 14 (2014) 56.

    Google Scholar 

  28. Wang Z, Chu M, Liu Z, Wang H, Zhao W and Gao L, MDPI Metals, 7 (2017) 1.

    Google Scholar 

  29. Pan J, Zheng G L, Zhu D Q and Zhou X L, Trans. Nonferrous Met. Soc. China 23 (2013) 421.

    Google Scholar 

  30. Australian Stainless Steel Development Assoc. https://www.assda.asn.au/technical- info/gradeselection/200-series-stainless-steels-crmn-grades.

Download references

Acknowledgement

The authors would like to thank the Director, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar for the support to publish this work. We also thank Ministry of Mines, India for their financial support to carry out the research work and Kiran Lata Bhaskar expresses her gratefulness to Academy of Scientific & Innovative Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagyadhar Bhoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, K.L., Bhoi, B. Iron and Nickel Enrichment in Low Grade Chromite Overburden to Produce Ferronickel Alloys. Trans Indian Inst Met 74, 1321–1332 (2021). https://doi.org/10.1007/s12666-020-02176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02176-4

Keywords

Navigation