Skip to main content
Log in

Investigation on Aging-Induced Degradation of Impact Toughness and Corrosion Performance of Duplex Stainless Steel Weldment

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Duplex stainless steels (DSSs) are prone to formation of various secondary phases in their microstructure upon exposure to high temperatures which can lead to degradation in their engineering performance. The present work was aimed to study the effect of a wide range of isothermal treatments (475°–1050 °C) on the impact toughness and corrosion resistance besides microstructure, ferrite content and microhardness of gas tungsten arc (GTA) welded 2205 DSS. It was observed that the isothermal exposure at 850 °C for 2 h led to maximum ferrite content reduction, imparted maximum hardening, caused maximum embrittlement of the weld metal (203 J → 2 J) and HAZ (204 J → 3 J) regions of the weldment besides causing maximum degradation in the pitting corrosion resistance. Corresponding to the aging condition of 475 °C/20 h, reduction in the ferrite content was not much, however, a significant increase in the microhardness along with severe loss in the toughness of the weld metal (203 J → 6 J) occurred, but  the HAZ region was relatively tolerant (204 J → 54 J) against loss of toughness. In general, impact and corrosion properties were highly sensitive to degradation at 850 °C. Hence it can be inferred that the amount of ferrite content reduction cannot be directly correlated with the extent of hardening, decrease in the toughness and corrosion resistance; as such, changes will be primarily governed by the type of secondary precipitation which is temperature and exposure duration-dependent in the case of DSS welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Singh J, and Shahi A S, Trans Ind Inst Met 72 (2019) 1497.

    Article  CAS  Google Scholar 

  2. Haddad N I A, The development of microstructure in duplex stainless steel welds, Doctoral dissertation, University of Cambridge, (1990).

  3. Charles J, Why and where duplex stainless steels. Duplex stainless Steels’ 97 (1997) 345.

    Google Scholar 

  4. Brozda J, and Lomozik M, Welding International 16 (2002) 5.

    Article  Google Scholar 

  5. Practical Guidelines for the Fabrication of Duplex Stainless Steel, IMOA (2014) Third Edition, ISBN 978-1-907470-09-7.

  6. Alvarez-Armas I, Degallaix-Moreuil S (Ed.), Duplex stainless steels, ISTE Ltd. and Wiley (2009) ISBN 978-1-84821-137-7.

  7. Olsson J, and Snis M, Desalination 205 (2007) 104.

    Article  CAS  Google Scholar 

  8. Hoffman J P, J S Afr Inst Min Metall, 86 (1986) 433.

    CAS  Google Scholar 

  9. Thorvaldsson T, Eriksson H, Kutka J, and Salwén A, Influence of microstructure on mechanical properties of a duplex stainless steel. Stainless Steel’84, Chalmers University of Technology, (1984) 101–105.

  10. Fargas G, Anglada M, and Mateo A, J Mater Process Techn 209 (2009) 1770.

    Article  CAS  Google Scholar 

  11. Miodownik A P, and Saunders N, Mater Sci Techn 18 (2002) 861.

    Article  Google Scholar 

  12. Redjaimia A, Metauer G, and Gantois M, Decomposition of Delta Ferrite in an Fe–22 Cr–5 Ni–3 Mo–0. 03 C Duplex Stainless Steel. A Morphological and Structural Study; In Proceedings of the Duplex Stainless Steels (’91); Beaune 1 (1991) 119–126.

  13. Josefsson B, Nilsson J O, and Wilson A, Phase transformations in duplex steels and the relation between continuous cooling and isothermal heat treatment. Duplex Stainless Steels’91, 1 (1991) 67–78.

  14. Nilsson J O, Mater Sci Techn 8 (1992) 685.

    Article  CAS  Google Scholar 

  15. Chen T H, Weng K L, and Yang J R, Mater Sci Eng A 338 (2002) 259.

    Article  Google Scholar 

  16. Hoffmeister H and Lothongkum G, Quantitative effects of nitrogen contents and cooling cycles on δ-γ transformation, chromium nitride precipitation and pitting corrosion after weld simulation of duplex stainless steels. In: Proceedings of the fourth international conference on duplex stainless steels 2 (1994) 80–89.

  17. Kotecki Demian J, Soldag. Insp. 15 (2010) 336.

    Article  Google Scholar 

  18. El Koussy M R, El Mahallawi I S, Khalifa W, Al Dawood M M, and Bueckins M, Mater Sci Techn 20 (2004) 375.

    Article  Google Scholar 

  19. Jebaraj A V, and Ajaykumar L, Proc Eng 64 (2013) 456.

    Article  Google Scholar 

  20. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, and Maza H, Mater Charac 59 (2008) 447.

    Article  CAS  Google Scholar 

  21. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Bettahar K, and Kherrouba N, Mater Sci Eng A 496 (2008) 447.

    Article  Google Scholar 

  22. Kashiwar A, Vennela N P, Kamath S L, and Khatirkar R K, Mater Charac 74 (2012) 55.

    Article  CAS  Google Scholar 

  23. Ghosh S K, and Mondal S, Mater Charac 59 (2008) 1776.

    Article  CAS  Google Scholar 

  24. Escriba D M, Materna-Morris E, Plaut R L, and Padilha A F, Mater Charac 60 (2009) 1214.

    Article  CAS  Google Scholar 

  25. Örnek C, Burke M G, Hashimoto T, and Engelberg D L, Metall and Mat Trans A 48 (2017) 1653.

    Article  Google Scholar 

  26. Wilms M E, Gadgil V J, Krougman J M, and Kolster B H, Mater High Temp 9 (1991) 160.

    Article  CAS  Google Scholar 

  27. Singh J, and Shahi A S, J Mater Process Tech 272 (2019) 137.

    Article  CAS  Google Scholar 

  28. Singh J, and Shahi A S, J Manuf Process 50 (2020) 581.

    Article  Google Scholar 

  29. Taban E, and Kaluc E, Weld World 55 (2011) 48.

    Article  CAS  Google Scholar 

  30. ASTM G48 Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution.

  31. Fu W, Yang Y S, Guo J J, and Tong W H, Mater Sci Techn 24 (2008) 941.

    Article  CAS  Google Scholar 

  32. Verma J, and Taiwade R V, J Manuf Process 25 (2017) 134.

    Article  Google Scholar 

  33. Fourie J W, and Robinson F P A, J S Afr Inst Min Metall 90 (1990) 59.

    CAS  Google Scholar 

  34. Zhang Z, Jing H, Xu L, Han Y, and Zhao L, Mater Des 109 (2016) 670.

    Article  CAS  Google Scholar 

  35. Hosseini V A, Hurtig K, and Karlsson L, Weld World 64 (2020) 283.

    Article  CAS  Google Scholar 

  36. Atamert S, and King J E, J Mater Sci Lett 12 (1993) 1144.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the infrastructural support extended in the form of testing facilities by Welding Metallurgy Laboratory, Department of Mechanical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur-148106 (Punjab), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jastej Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, J. & Shahi, A.S. Investigation on Aging-Induced Degradation of Impact Toughness and Corrosion Performance of Duplex Stainless Steel Weldment. Trans Indian Inst Met 73, 2747–2765 (2020). https://doi.org/10.1007/s12666-020-02070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02070-z

Keywords

Navigation