Skip to main content
Log in

Effect of Reversible Cyclic Plastic Deformation and Thermal Treatment on the Microstructure and Mechanical Properties of SS304L Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, the effect of heat treatment and reversible cyclic plastic deformation (RCPD) on microstructure and mechanical properties of stainless steel 304L (SS304L) has been examined. The RCPD demonstrated a significant reduction in the grain size as well as formation of deformation-induced twins, without any observable phase transformation in the SS304L specimens. An isothermal annealing of as-received specimens at 950 °C (1223 K) for varying annealing durations exhibited the formation of recrystallized equiaxed austenitic microstructure. It was also observed that the grain size and the twin width increased simultaneously with annealing time, wherein the grain size increased linearly, whereas the increment in the twin width was parabolic in nature. The density of deformation twins decreased with increasing annealing time, which was attributed to the variation in the stacking fault energy (SFE) with temperature and duration of annealing treatment. The average hardness values decreased with increasing annealing time, and this trend was correlated with the increasing grain sizes and, simultaneously, decreasing amount of twin density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shen Y F, Li X X, Sun X, Wang YD, and Zuo L, Mater Sci Eng A552 (2012) 514.

  2. Ye C, Telang A, Gill A S, Suslov S, Idell Y, Zweiacker K, Wiezorek J M K, Zhou Z, Qian D, Mannava S R, and Vasudevan V K, Mater Sci Eng A613 (2014) 274.

    Article  CAS  Google Scholar 

  3. Mahajan S, Scripta Mater68 (2013) 95.

  4. Gleiter H, Acta Metall17 (1969) 1421.

  5. Carpenter H C H, and Tamura S, Proc R Soc A Math Phys Eng Sci113 (1926) 161. https://doi.org/10.1098/rspa.1926.0144

  6. Meyers M A, and Murr L E, Acta Metall26 (1978) 951.

  7. Gertsman V Y, Tangri K, and Valiev RZ, Acta Metall Mater42(1994) 785.

  8. Moallemi M, Kermanpur A, Najafizadeh A, Rezace A, Baghbadorani H S, and Nezhadfar P D, Mater Sci Eng A653 (2016) 147.

    Article  CAS  Google Scholar 

  9. Bruce G, Ph. D. Thesis. A general mechanism of martensitic nucleation (1974) 142.

  10. Olson GB, and Cohen M. Metall Trans A7A (1976) 1897.

  11. Cao Y, Wang Y B, Chen Z B, Liao X Z, Kawasaki M, Ringer S P, Langdon T G, and Zhu Y T, Mater Sci Eng A578 (2013) 110.

    Article  CAS  Google Scholar 

  12. Asgari S, El-Danaf E, Kalidindi S R, and Doherty R D, Metall Mater Trans A28 (1997) 1781.

  13. Ueno H, Kakihata K, Kaneko Y, Hashimoto S, and Vinogradov A, J Mater Sci46 (2011) 4276.

  14. Yapici G G, Karaman I, Luo ZP, Maier H J, and Chumlyakov Y I, J Mater Sci19 (2004) 2268.

  15. Somekawa H, Watanabe H, Basha D A, Singh A, and Inoue T, Scripta Mater129(2017) 35.

  16. Remy L, Scripta Mater11 (1977) 169.

  17. Lee T H, Oh C S, Kim S J, and Takaki S, Acta Mater55(2007) 3649.

  18. Gutierrez-Urrutia I, Zaefferer S, and Raabe D. Mater Sci Eng A527 (2010) 3552.

  19. Rath BB, Imam M A, and Pande C S, Mater Phys Mech1 (2000) 61.

  20. Pande C S, Imam M A, and Rath BB, Metall Trans A21 (1990) 2891.

  21. Mahajan S, Acta Mater45 (1997) 2633.

  22. Lu L, Shen Y, Chen X, Qian L, and Lu K. Science304 (2004) 422.

  23. Mathewson C H, Trans Am Soc Metals32 (1944) 38.

  24. Murr L E, Interfacial phenomena in metals and alloys. Addison-Wesley Pub.Co. advanced book program, (1975) 387.

  25. Wang X, Zurob H S, Embury J D, Ren X, and Yakubtsov I, Mater Sci Eng A527(2010) 3785.

  26. Bouaziz O, Scott C P, and Petitgand G, Scripta Mater60 (2009) 714.

  27. Hu H, and Smith C S, Acta Metall4 (1956) 638.

  28. Smith C S, and Guttman L, JOM5 (1953) 81.

    Article  Google Scholar 

  29. Schramm R E, and Reed R P, Metall Trans A6 (1975) 1345.

  30. El-Danaf E, Kalidindi S R, and Doherty R D, Metall Mater Trans A30 (1999) 1223.

  31. Blewitt T H, Coltman RR, and Redman JK, J Appl Phys28 (1957) 651.

  32. Suzuki H, and Barrett C S, Acta Metall6 (1958) 156.

  33. Cottrell A H, Bilby B,A, and Lx A, Philos Mag Ser7 (1951) 573.

  34. Christian J W, and Mahajan S, Progress Mater Sci39 (1995) 1.

  35. Mahajan S, and Chin G Y, Acta Metall21 (1973) 353.

  36. Fujita H, and Mori T,. Scripta Metall9 (1975) 631.

  37. Mori T, and Fujita H, , Acta Metall28 (1980) 771.

  38. Niewczas M, and Saada G, Philos Mag A82 (2002) 167. https://doi.org/10.1080/01418610208240003

    CAS  Google Scholar 

  39. Tewary N K, Ghosh S K, and Chatterjee S Int J Metall Eng. 4 (2015) 12. https://doi.org/10.5923/j.ijmee.20150401.03

  40. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, and Hirth J P, Acta Mater58 (2010) 2262

  41. Fullman RL, and Fisher J C, J Appl Phys22 (1951) 1350.

  42. Torrents A, Yang H, and Mohamed F A, Metall Mater Trans A 41 (2010) 621–630.

  43. Yang B, and Vehoff H, Mate Sci Eng A400(2005) 467.

  44. Westbrook J H, Aust K T, Hanneman R E, and Niessensn P, Acta Metall16 (1968) 291.

  45. Wang S J, Jozaghi T, Karaman I, Arroyave R, and Chumlyakov YI, Mater Sci Eng A. 694 (2017)121.

  46. Bouaziz O, and Barbier D, J Nanosci Nanotechnol12 (2012) 8732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Sharma, S. & Vajpai, S.K. Effect of Reversible Cyclic Plastic Deformation and Thermal Treatment on the Microstructure and Mechanical Properties of SS304L Steel. Trans Indian Inst Met 73, 1227–1237 (2020). https://doi.org/10.1007/s12666-020-01971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01971-3

Keywords

Navigation