Skip to main content
Log in

Effects on Micro-Surface Texturing of Mg/B4C Matrix Composites Under Dry Sliding Wear Condition

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The predominant objective of this exploration is analyses of the wear conduct of pure Mg and Mg–B4C (5–15%) composites developed by powder metallurgy technique. The elemental map and microscopic examination of the composites were executed by energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) analysis. Wear conduct of the Mg–B4C composites was investigated at 2000 m sliding faraway with about 30, 60 and 90 N varying loads with and distinct sliding paces of 1, 1.5 and 2 m/s. The wear samples surfaces were explored by SEM, EDS and profilometer analysis. The outcomes establish that the Mg–15% B4C specimen has excellent wear behavior. The Mg–15% B4C composite has significantly minimum specific wear rate than that of Mg and Mg–(5–10%) B4C composites under all load conditions. The surface roughness of Mg decreases from 3.718 to 0.647 µm with increasing of B4C inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ρ th :

Theoretical density (g/cc)

ρ a :

Experimental or actual density (g/cc)

ρ w :

Density of distilled water (g/cc)

W a :

Mass of the specimen in air (g)

W w :

Mass in distilled water (g)

H v :

Microhardness

D :

Crystalline size (nm)

λ :

Wavelength (Å)

β :

Line width

θ :

Angle of diffraction

References

  1. Khandelwal A, Mani K, Srivastava N, Gupta R, and Chaudhari G P, Compos Part B123 (2017) 64.

    Article  CAS  Google Scholar 

  2. Kavimani V, Prakash K S, and Thankachan T, Compos Part B162 (2019) 508.

    Article  CAS  Google Scholar 

  3. Wang X, Li L, Xie Z, and Yu G, Electrochim Acta283 (2018) 1845.

    Article  CAS  Google Scholar 

  4. Gupta M, and Wong W L E, Mater Charact105 (2015) 30.

    Article  CAS  Google Scholar 

  5. Dinaharan I, Vettivel S C, Balakrishnan M, and Akinlabi E T, J Magnes Alloys7 (2019) 155.

    Article  CAS  Google Scholar 

  6. Falcon-franco L, Bedolla-becerril E, Lemus-ruiz J, Gonzalez-rodríguez J G, Guardian R, and Rosales I, Compos Part B42 (2011) 275.

    Article  Google Scholar 

  7. Zhang Y, Gore P, Rong W, Wu Y, Yan Y, Zhang R, Peng L, Feng Nie J and Birbilis N, Corros Sci136 (2018) 106.

    Article  CAS  Google Scholar 

  8. Adsul S H, Soma Raju K R C, Sarada B V, Sonawane S H, and Subasri R, J Magnes Alloys6 (2018) 299.

    Article  CAS  Google Scholar 

  9. Ghasali E, Alizadeh M, Niazmand M, and Ebadzadeh T, J Alloys Compd697 (2017) 200.

    Article  CAS  Google Scholar 

  10. Viswanath A, Dieringa H, Kumar K K A, Pillai U T S, and Pai B C, J Magnes Alloy3 (2015) 16.

    Article  CAS  Google Scholar 

  11. Poddar P, Srivastava V C, De P K, and Sahoo K L, Mater Sci Eng A460 (2007) 357.

    Article  Google Scholar 

  12. Thévenot F, J Eur Ceram Soc6 (1990) 205.

    Article  Google Scholar 

  13. Ghasali E, Alizadeh M, Ebadzadeh T, Pakseresht A, and Rahbari A, Integr Med Res4 (2015) 411.

    CAS  Google Scholar 

  14. Dieringa H, J Mater Sci46 (2011) 289.

    Article  CAS  Google Scholar 

  15. Domnich V, Reynaud S, Haber R A, and Chhowalla M, J Am Ceram Soc94 (2011) 3605.

    Article  CAS  Google Scholar 

  16. Jung J, and Kang S, J Am Ceram Soc87 (2004) 47.

    Article  CAS  Google Scholar 

  17. Asgari A, Sedighi M, and Krajnik P, J Clean Prod232 (2019) 1187.

    Article  CAS  Google Scholar 

  18. Kubasek J, Dvorsky D, Cavojsky M, Vojtech D, Beronska N, and Fousova M, J Mater Sci Technol33 (2016) 652.

    Article  Google Scholar 

  19. Yan Y, Cao H, Kang Y, Yu K, Xiao T, Luo J, Deng Y, Fang H, Xiong H and Dai Y, J Alloys Compd693 (2016) 1277.

    Article  Google Scholar 

  20. Guleryuz L F, Ozan S, Uzunsoy D, and Ipek R, Powder Metall Met Ceram51 (2012) 456.

    Article  CAS  Google Scholar 

  21. Ren Z, Zhang X G, Sui L, Zhang T, Pang L, and Jin J Z, Mater Res Innov14 (2010) 206.

    Article  CAS  Google Scholar 

  22. Zhenzhen W, Xiaoshan L, Guoqiu H, Jingquan L, Bin G, and Peiwen L, Mater Res Express6 (2019) 096563.

    Article  Google Scholar 

  23. Aatthisugan I, Razal Rose A, and Selwyn Jebadurai D, J Magnes Alloy5 (2017) 20.

    Article  CAS  Google Scholar 

  24. Li X, Shi T, Zhang C, Li S, Zhang J, and Zhang L C, Mater Res Express5 (2018) 086502.

    Article  Google Scholar 

  25. Majzoobi G H, Rahmani K, and Atrian A, Mater Res Express5 (2018) 015046.

    Article  Google Scholar 

  26. Yang Z R, Wang S Q, Zhao Y T, and Wei M X, Mater Charact61 (2010) 554.

    Article  CAS  Google Scholar 

  27. Wang Y Q, Afsar A M, Jang J H, Han K S, and Song J I, Wear268 (2010) 863.

    Article  CAS  Google Scholar 

  28. Selvam B, Marimuthu P, Narayanasamy R, Anandakrishnan V, Tun K S, Gupta M, and Kamaraj M, Mater Des58 (2014) 475.

    Article  CAS  Google Scholar 

  29. Narayanasamy P, Selvakumar N, and Balasundar P, Trans Indian Inst Met68 (2015) 911.

    Article  CAS  Google Scholar 

  30. Labib F, Ghasemi H M, and Mahmudi R, Wear348 (2016) 69.

    Article  Google Scholar 

  31. Habibnejad Korayem M, Mahmudi R, Ghasemi H M, and Poole W J, Wear268 (2010) 405.

    Article  CAS  Google Scholar 

  32. Yuan C Q, Peng Z, Yan X P, and Zhou X C, Wear265 (2008) 341.

    Article  CAS  Google Scholar 

  33. Kubiak K J, Liskiewicz T W, and Mathia T G, Tribol Int44 (2011) 1427.

    Article  CAS  Google Scholar 

  34. Ramanan G, Suresh S, Rajesh Prabha N, and Edwin Raja Dhas J, Mater Res Express6 (2019) 066544.

    Article  CAS  Google Scholar 

  35. Manivannan I, Ranganathan S, Gopalakannan S, and Suresh S, Trans Indian Inst Met71 (2018) 1897.

    Article  CAS  Google Scholar 

  36. MPIF Standard 42, Determination of Density of Compacted or Sintered Metal Powder products, Metal Powder Industries Federation (1977).

  37. Navaneetha Krishnan M, Suresh S, and Vettivel S C, J Alloys Compd747 (2018) 324.

    Article  CAS  Google Scholar 

  38. Vettivel S C, Selvakumar N, Leema N, and Haiter Lenin A, Mater Des56 (2014) 791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navaneetha Krishnan, M., Suresh, S. & Vettivel, S.C. Effects on Micro-Surface Texturing of Mg/B4C Matrix Composites Under Dry Sliding Wear Condition. Trans Indian Inst Met 73, 897–912 (2020). https://doi.org/10.1007/s12666-020-01913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01913-z

Keywords

Navigation