Skip to main content
Log in

The Effect of Bath Parameters on the Electrocrystallisation of Cox–Cu100−x Alloys on Stainless Steel Cathode

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The electrocrystallisation of the alloys of Cox–Cu100−x onto stainless steel cathode was investigated by performing cyclic voltammetry (CV) to understand the mechanism of deposition. The deposit morphology and crystal structure of deposit were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The kinetic parameters were obtained from the cathodic polarisation of the CV to predict the electron transfer mechanism in the process. The transfer coefficient value (α) of the kinetic parameter revealed that both cathodic and anodic processes were unsymmetrical. It was demonstrated that the current efficiency of the deposit increased from 96.8% at pH 4.0 to 99.2% at pH 7, and then it dropped to 89.7% at pH 8. Before the deposition of the Co–Cu alloy, the initial copper deposition occurred at − 0.24 V and peaked at − 0.66 V. This was followed by the deposition of the Co–Cu alloy at − 1.04 V, which occurred after the deposition potential of Cu2+ (− 0.24 V) and Co2+ (− 0.89 V). The current then increasesd with a small increment in applied potential due to subsequent diffusion-controlled copper reduction along with the co-deposition of Co. The variation in the kinetic parameters was also reflected in the current efficiencies, the deposit morphologies, the crystallographic orientations and the nucleation overpotential values. The percentage of cobalt content in the alloy was observed to decrease in at.% from 54.35% at pH 4 to 49.86% at pH 6 and further to 20.62% at pH 8. The structure of the deposited alloy confirmed the formation of a single solid solution phase having different planes such as (222), (311), (220), (200) and a sharp peak due to face-centred cubic structure with (111) plane. This strong peak along with other similar peaks were observed in all the XRD of the deposit obtained at pH 4, 6 and 8. The morphology of the deposit characterised by the SEM showed that the deposit changed from a bitter gourd to a regular cauliflower-like structure as the pH value changed from 4 to 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y Nakamoto, M Yuasa, Y Chen, H Kusuda, and M Mabuchi, Scr Mater58 (2008) 731.

    CAS  Google Scholar 

  2. T Cohen-Hyams, W D Kaplan, D Aurbach, Y S Cohen, and J Yahalom, J Electrochem Soc150 (2003) C28.

    CAS  Google Scholar 

  3. S Kashiwabara, and Y Jyoko, J Electrochem Soc144 (1997) L193.

    Google Scholar 

  4. E Gomez, A Labarta, A Llorente, and E Valles, J Electroanal Chem517 (2001) 63.

    CAS  Google Scholar 

  5. Y Z Fang, Y Liu, and L H Zhang, Appl Catal A Gen397 (2011) 183.

    CAS  Google Scholar 

  6. A Cao, G Liu, Y Yue, L Zhang, Y Liu, RSC Adv5 (2015) 58804.

    CAS  Google Scholar 

  7. S S Abd El-Rehim, S M Abd El-Wahab, S M Rashwan, and Z M Anwar, J Chem Technol Biotechnol75 (2000) 237.

    Google Scholar 

  8. T Nishizawa, and K Ishida, Bull Alloy Phase Diagr5 (1984) 161.

    CAS  Google Scholar 

  9. S Gu, P Atanasova, M J Hampden-smith, T T Kodas, Thin Solid Films340 (1999) 45.

    CAS  Google Scholar 

  10. Y Huai, M Chaker, H Pépin, S Boily, X Bian, and R W Cochrane, J Magn Magn Mater136 (1994) 204.

    CAS  Google Scholar 

  11. C Gente, M Oehring, and R Bormann, Phys Rev B48 (1993) 13244.

    CAS  Google Scholar 

  12. D L Khalyapin, P D Kim, J Kim, I A Turpanov, G V Bondarenko, and T N Isaeva, I Kim, Phys Solid State52 (2010) 1787.

    CAS  Google Scholar 

  13. P E Bradley, and D Landolt, Electrochim Acta45 (1999) 1077.

    CAS  Google Scholar 

  14. E Gomez, A Llorente, X Alcobe, and E Vallés, J Solid State Electrochem8 (2004) 82.

    CAS  Google Scholar 

  15. Labarta A, A Llorente, and E Valles, Surf Coat Technol153 (2002) 261.

    Google Scholar 

  16. R L Anton, M L Fdez-Gubieda, A Garcia-Arribas, J Herreros, and M Insausti, Mater Sci Eng A335 (2002) 94.

    Google Scholar 

  17. L T De Farias, A S Luna, R De Janeiro, R São, and F Xavier, Mater Res11(2008) 1.

    Google Scholar 

  18. S K Ghosh, T Bera, C Saxena, S Bhattacharya, and G K Dey, J Alloys Compd475 (2009) 676.

    CAS  Google Scholar 

  19. Y Liu, and W Wang, Electrochem Soc159 (2012) D375.

    CAS  Google Scholar 

  20. C D Grill, J P Kollender, and A W Hassel, J Electrochem Soc163 (2016) D3069.

    CAS  Google Scholar 

  21. Y Ueda, and M Ito, Jpn J Appl Phys33 (1994) L1403.

    CAS  Google Scholar 

  22. Y Jyoko, S Kashiwabara, and Y Hayashi, J Electrochem Soc144 (1997) L5.

    CAS  Google Scholar 

  23. H Zaman, A Yamada, H Fukuda, and Y Ueda, J Electrochem Soc145(1998) 565.

    CAS  Google Scholar 

  24. Y Ueda, T Houga, H Zaman, and A Yamada, J Solid State Chem147 (1999) 274.

    CAS  Google Scholar 

  25. L Péter, A Cziráki, L Pogány, Z Kupay, I Bakonyi, M Uhlemann, M Herrich, B Arnold, and T W K Bauer, J Electrochem Soc148 (2001) C168.

    Google Scholar 

  26. T Ohgai, X Hoffer, L Gravier, and J P Ansermet, J Appl Electrochem34 (2004) 1007.

    CAS  Google Scholar 

  27. Q-X Liu, L Péter, J Pádár, and I Bakonyi, J Electrochem Soc152 (2005) C316.

    CAS  Google Scholar 

  28. Y Lia, R Fan, M Moldovan, D P Young, W Wang, and E J Podlaha, ECS Trans2 (2007) 379.

    Google Scholar 

  29. S Zsurzsa, L Peter, L F Kiss, and I Bakonyi, J Magn Magn Mater421 (2017) 194.

    CAS  Google Scholar 

  30. T Wang, F Li, Y Wang, and L Song, Phys Stat Sol(a)203 (2006) 2426.

    CAS  Google Scholar 

  31. J H Min, J H Wu, J U Cho, Q X Liu, J H Lee, Y D Ko, J S Chung, J H Lee, K Y Kim. J Magn Magn Mater304 (2006) e100.

    Google Scholar 

  32. A Hannour, R Lardé, M Jean, J Bran, P Pareige, and J M Le Breton, J Appl Phys110 (2011) 63921.

    Google Scholar 

  33. A Franczak, A Levesque, P Zabinski, D Li, M Czapkiewicz, R Kowalik, F Bohr, Q Wang, and J-P Chopart, Mater Chem Phys162 (2015) 222.

    Google Scholar 

  34. A Tekgul, H Kockar, H Kuru, and M Alper, Z. Naturforsch73 (2018) 127.

    Google Scholar 

  35. T M de Souza, D C B do Lago, and L F de Senna, Mater Res22 (2019) 1.

    Google Scholar 

  36. J J Kelly, M Cantoni, and D Landolt, J Electrochem Soc148 (2001) C620.

    CAS  Google Scholar 

  37. J J Kelly, P E Bradley, and D Landolt, J Electrochem Soc147 (2000) 2975.

    CAS  Google Scholar 

  38. A E Mohamed, S M Rashwan, S M Abdel-Wahaab, and M M Kamel, J Appl Electrochem33 (2003) 1085.

    CAS  Google Scholar 

  39. M Gu, Electrochim Acta52 (2007) 4443.

    CAS  Google Scholar 

  40. K Ignatova, and L Petkov, J Univ Chem Technol Metall44 (2009) 133.

    CAS  Google Scholar 

  41. K Ignatova, and D Lilova, J Chem Technol Metall51 (2016) 173.

    CAS  Google Scholar 

  42. L Mentar, M R Khelladi, A Azizi, G Schmerber, and A Dinia, Trans Inst Met Finish89 (2011) 143.

    CAS  Google Scholar 

  43. L Mentar, M R Khelladi, A Azizi, and A Kahoul, Trans IMF90 (2012) 98.

    CAS  Google Scholar 

  44. M R Khelladi, L Mentar, A Azizi, L Makhloufi, G Schmerber, and A Dinia, J Mater Sci Mater Electron23 (2012) 2245.

    CAS  Google Scholar 

  45. G Senthilkumar, and S Ramachandran , in IEEE Proc Frontiers in Automobile and Mechanical Engineering, 25–27 Nov (2010) 257. https://doi.org/10.1109/fame.2010.5714837.

  46. K G Mishra, and R K Paramguru, J Electrochem Soc143 (1996) 510.

    CAS  Google Scholar 

  47. K G Mishra, and R K Paramguru, Metall Mater Trans B 30 (1999) 223.

    Google Scholar 

  48. M Ved, N Sakhnenko, M Glushkova, and T Bairachna, Chem Chem Technol8 (2014) 275.

    CAS  Google Scholar 

  49. K G Mishra, and R K Paramguru, Afr J Pure Appl Chem4 (2010) 87.

    CAS  Google Scholar 

  50. S Mishra, S K Nathsharma, K G Mishra, and R K Paramguru, J Electrochem Soc165 (2018) D206.

    CAS  Google Scholar 

  51. R K Paramguru, and S B Kanungo, Can Metall Quart37 (1998) 389.

    CAS  Google Scholar 

  52. R K Paramguru, K G Mishra, and S B Kanungo, Can Metall Quart37 (1998) 395.

    CAS  Google Scholar 

  53. R K Paramguru, and S B Kanungo, Can Metall Quart37 (1998) 405.

    CAS  Google Scholar 

  54. K G Mishra, and R K Paramguru, J Electrochem Soc147 (2000) 3302.

    CAS  Google Scholar 

  55. M Kanungo, V Chakravarty, K G Mishra, and S C Das, Hydrometallurgy61 (2001) 1.

    CAS  Google Scholar 

  56. K G Mishra, P Singh, and D M Muir, Hydrometallurgy65 (2002) 97.

    CAS  Google Scholar 

  57. Mishra KG, Singh P, Hefter G and Muir D, Metall Mater Trans B33B (2002) 137.

    CAS  Google Scholar 

  58. R Y Ying, J Electrochem Soc135(1988) 2964.

    CAS  Google Scholar 

  59. E Gómez, A Llorente, and E Vallés, J Electroanal Chem495 (2000) 19.

    Google Scholar 

  60. G R Pattanaik, D K Pandya, and S C Kashyap, J Electrochem Soc149 (2002) C363.

    CAS  Google Scholar 

  61. P Jiao, N Duan, C Zhang, F Xu, G Chen, J Li, and L Jiang, Int J Hydrog Energy41 (2016) 17793.

    CAS  Google Scholar 

  62. T G de Lima, B C C A Rocha, A V C Braga, D C B do Lago, A S Luna, and L F Senna, Surf Coat Technol276 (2015) 606.

    Google Scholar 

Download references

Acknowledgements

The authors are obliged to the SERB, DST, New Delhi, for the financial support, the Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, and the IMMT, Bhubaneswar, for providing the necessary laboratory and characterisation facilities, respectively, for conducting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krushna Gopal Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathsharma, S.K., Mishra, S., Mishra, K.G. et al. The Effect of Bath Parameters on the Electrocrystallisation of Cox–Cu100−x Alloys on Stainless Steel Cathode. Trans Indian Inst Met 73, 377–387 (2020). https://doi.org/10.1007/s12666-019-01849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01849-z

Keywords

Navigation