Skip to main content
Log in

Influence of Grooved Base Plate on Microstructure and Mechanical Strength of Aluminum–Stainless Steel Explosive Cladding

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, aluminum 6061 (AA6061) plates are explosively cladded with stainless steel 304 (SS304) plates having ‘V’ and dovetail grooves machined on the mating surfaces of the stainless steel plates. The results are correlated with the outcome of Al 6061-groove less SS 304 explosive clads. The machining of the grooves promotes undulating interfaces, due to the enhancement in the kinetic energy utilization. Though, a slender molten layer formation comprising of FeAl2, Al3Fe and Al5Fe2 compounds are observed in the crest of the grooves, mechanical strength of the clads increases because of the enhanced integrity across the grooved region. Micro-hardness increases in the closer proximity of the collision surface, while the tensile and shear strength of the AA6061-grooved SS304 explosive clads are higher than the conventional Al-groove less steel explosive clads. Of the two grooved base plates attempted, V-grooved base plate exhibits superior microstructure and strength characteristics. Fracture surface of both tensile and shear test specimens exhibits ductile and mixed mode of fracture at different locations of the clad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fronczek D M, Wojewoda-Budka J, Chulist R, Sypien A, Korneva A, Szulc Z, Schell N, and Zieba P, Mater Des91 (2016) 80.

    Article  CAS  Google Scholar 

  2. Indhu R, Soundarapandian S, and Vijayaraghavan L, J Mater Process Technol262 (2018) 411.

    Article  Google Scholar 

  3. Reddy G M, Mohandas T, Sambasiva Rao A, and Satyanarayana V V, Mater Manuf Process20 (2005) 147.

    Article  CAS  Google Scholar 

  4. Carvalho G H S F L, Galvão I, Mendes R, Leal R M, and Loureiro A, J Mater Process Technol262 (2018) 340.

    Article  CAS  Google Scholar 

  5. Saravanan S, Raghukandan K, and Hokamoto K, Arch Civ Mech Eng16 (2016) 563.

    Article  Google Scholar 

  6. Han J H, Ahn J P, and Shin MC, J Mater Sci38 (2003) 13.

    Article  CAS  Google Scholar 

  7. Gülenç B, Kaya Y, Durgutlu A, Gülenç I T, Yıldırım M S, and Kahraman N, Arch Civ Mech Eng16 (2016) 1.

    Article  Google Scholar 

  8. Aceves S M, Espinosa-Loza F, Elmer J W, and Huber R, Int J Hydrogen Energy40 (2015) 1490.

    Article  CAS  Google Scholar 

  9. Li X, Ma H, and Shen Z, Mater Des87 (2015) 815.

    Article  CAS  Google Scholar 

  10. Wang B, Xie F, Luo X, Zhou J, J Mater Res Technol5 (2016) 333.

    Article  CAS  Google Scholar 

  11. Mousavi S A, and Sartangi P F, Mater Des30 (2009) 459.

    Article  Google Scholar 

  12. Duan M, Wang Y, Ran H, Ma R, and Wei L, Mater Manuf Process29 (2014) 101.

    Article  Google Scholar 

  13. Somasundaram S, Krishnamurthy R, and Kazuyuki H, J Cent South Univ24 (2017) 1245.

    Article  CAS  Google Scholar 

  14. Song J, Kostka A, Veehmayer M, and Raabe D, Mater Sci Eng A528 (2011) 2641.

    Article  Google Scholar 

  15. Chu Q, Zhang M, Li J, and Yan C, Mater Sci Eng A689 (2017) 323.

    Article  CAS  Google Scholar 

  16. Satyanarayan, Tanaka S, Mori A, and Hokamoto K, J Mater Process Technol245 (2017) 300.

    Article  CAS  Google Scholar 

  17. Bataev I A, Lazurenko D V, Tanaka S, Hokamoto K, Bataev A A, Guo Y, and Jorge Jr A M, Acta Mater135 (2017) 277.

    Article  CAS  Google Scholar 

  18. Lysak V I, and Kuzmin S V, J Mater Process Technol222 (2015) 356.

    Article  Google Scholar 

  19. Paul H, Miszczyk M M, Chulist R, Prażmowski M, Morgiel J, Gałka A, Faryna M, and Brisset F, Mater Des153 (2018) 177.

    Article  CAS  Google Scholar 

  20. Zhang H, Jiao K X, Zhang J L, and Liu J, Mater Sci Eng A731 (2018) 278.

    Article  CAS  Google Scholar 

  21. Mastanaiah P, Reddy G M, Prasad K S, and Murthy C V S, J Mater Process Technol214 (2014) 2316.

    Article  CAS  Google Scholar 

  22. Bina M H, Dehghani F, and Salimi M, Mater Des45 (2013) 504.

    Article  CAS  Google Scholar 

  23. Guoyin Z, Xi S, and Jinghua Z, Rare Met Mater Eng46 (2017) 906.

    Article  Google Scholar 

  24. Rao N V, Reddy G M, and Nagarjuna S, Trans Indian Inst Met67 (2014) 67.

    Article  Google Scholar 

  25. Saravanan S, and Raghukandan K, Mater Manuf Process28 (2013) 589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saravanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson Dhileep Kumar, C., Saravanan, S. & Raghukandan, K. Influence of Grooved Base Plate on Microstructure and Mechanical Strength of Aluminum–Stainless Steel Explosive Cladding. Trans Indian Inst Met 72, 3269–3276 (2019). https://doi.org/10.1007/s12666-019-01795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01795-w

Keywords

Navigation