Skip to main content

Advertisement

Log in

Negative Strain Rate Sensitivity in Two-Phase Nanocrystalline CoCrFeMnNi High-Entropy Alloy with Broader Grain Size Distribution Studied by Nanoindentation

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Two-phase microstructure was realized in CoCrFeMnNi system using a combination of ball milling and spark plasma sintering at 1273 K. Microstructure consisted of finer average grain size with broader grain size distribution, complex solid solution phases (a major face-centered cubic phase and a minor body-centered cubic phase) with very close lattice constants, dislocations and nano twins. A high hardness of 6.3 GPa and a negative strain rate sensitivity (with no associated serrated flow) of − 0.0206 were observed. Various interactions between dislocations and grain boundaries/interphase boundaries/twin boundaries, prevailing atomic level complex chemistry in the lattices, interfaces and dislocation cores might be the reasons for the observed flow characteristics. Dislocation–solute atom interactions observed in conventional dilute alloys that have resulted in negative strain rate sensitivity and dynamic strain aging may not be operating in the present alloy system under the given set of test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsua C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.

    CAS  Google Scholar 

  2. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375377 (2004) 213.

    Article  Google Scholar 

  3. Murty B S, Yeh J W, Ranganathan S, and Bhattacharjee P P, High-Entropy Alloys, Elsevier, Amsterdam (2019).

    Book  Google Scholar 

  4. Gao M C, Yeh J W, Liaw P K, and Zhang Y., High-Entropy Alloys, Springer, Berlin (2016).

    Book  Google Scholar 

  5. Miracle D B, and Senkov O N, Acta Mater 122 (2017) 448.

    Article  CAS  Google Scholar 

  6. Zhao Y, Lee D H, Seok M Y, Lee J A, Phaniraj M P, Suh J Y, Ha H Y, Kim J Y, Ramamurty U, and Jang J I, Scr Mater 135 (2017) 54.

    Article  CAS  Google Scholar 

  7. Lee D H, Choi I C, Yang G, Lu Z, Kawasaki M, Ramamurty U, Schwaiger R, and Jang J I, Scr Mater 156 (2018) 129.

    Article  CAS  Google Scholar 

  8. Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, and Ritchie R O, Science 345 (2014) 1153.

    Article  CAS  Google Scholar 

  9. Zhang Z, Mao M M, Wang J, Gludovatz B, Zhang Z, Mao S X, George E P, Yu Q, and Ritchie R O, Nat Commun 6 (2015), 10143.

    Article  CAS  Google Scholar 

  10. Koch C C, J Mater Res 32 (2017) 3435.

    Article  CAS  Google Scholar 

  11. Vaidya M, Muralikrishna G M, and Murty B S, J Mater Res 34 (2019) 664.

    Article  CAS  Google Scholar 

  12. Joo S H, Kato H, Jang M J, Moon J, Kim E B, Hong S J, and Kim H S, J Alloys Compd 698 (2017) 591.

    Article  CAS  Google Scholar 

  13. Ganji R S, Karthik P S, Rao K B S, and Rajulapati K V, Acta Mater 125 (2017) 58.

    Article  CAS  Google Scholar 

  14. Kocks U F, Argon A S, and Ashby M F, Prog Mater Sci 19 (1975) 1.

    Article  Google Scholar 

  15. Wei Q, Cheng S, Ramesh K T, and Ma E, Mater Sci Eng A 381 (2004) 71.

    Article  Google Scholar 

  16. Varam S, Narayana P V S L, Prasad M D, Chakravarty D, Rajulapati K V, and Bhanu Sankara Rao K, Phil Mag Lett 94 (2014) 582.

    Article  CAS  Google Scholar 

  17. Varam S, Rajulapati K V, Bhanu Sankara Rao K, Scattergood R O, Murty K L, and Koch C C. Metall Mater Trans A 45 (2014) 5249.

    Article  CAS  Google Scholar 

  18. Komarasamy M, Alagarsamy K, and Mishra R S, Intermetallics 84 (2017) 20.

    Article  CAS  Google Scholar 

  19. Yasuda H Y, Shigeno K, and Nagase T, Scr Mater 108 (2015) 80.

    Article  CAS  Google Scholar 

  20. Maier-Kainer V, Schuh B, George E P, Clemens H, and Hohenwarter A, J Mater Res 32 (2017) 2658.

    Article  Google Scholar 

  21. Basu S, Li Z, Pradeep K G, and Raabe D, Front Mater 5 (2018) 30.

    Article  Google Scholar 

  22. Dieter G E, Mechanical Metallurgy, Third Edition, McGraw Hill Education (India), Bangalore (2013) p 311.

  23. Bhanu Sankara Rao K, Kalluri S, Halford G R, and McGaw M A, Scr Metall Mater 32 (1995) 493.

    Article  Google Scholar 

  24. Cottrell A H, and Bilby B A, Proc Phys Soc Lond A 62 (1949) 49.

    Article  Google Scholar 

  25. Picu R C, Acta Mater 52 (2004), 3447.

    Article  CAS  Google Scholar 

  26. Yoshida S, Bhattacharjee T, Bai Y, and Tsuji N, Scr Mater 134 (2017) 33.

    Article  CAS  Google Scholar 

  27. Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, and Suresh S, Acta Mater 53 (2005) 2169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental facilities used in this work at University of Hyderabad were supported by various schemes i.e., DST-PURSE, DST-FIST and Central Facility for Nanotechnology, funded by the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rajulapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhijit, A., Varghese, J., Chalavadi, P. et al. Negative Strain Rate Sensitivity in Two-Phase Nanocrystalline CoCrFeMnNi High-Entropy Alloy with Broader Grain Size Distribution Studied by Nanoindentation. Trans Indian Inst Met 72, 2861–2867 (2019). https://doi.org/10.1007/s12666-019-01762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01762-5

Keywords

Navigation