Skip to main content
Log in

Microstructure Evolution and Softening Mechanism During Hot Deformation of Cu–0.19Cr–0.1Ag Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hot deformation tests of an upward continuous cast Cu–0.19Cr–0.1Ag were performed on a thermal simulation testing machine with various strain rates (0.01–10 s−1) at different deformation temperatures (750–950 °C) to investigate the microstructural evolution of hot deformation and the softening mechanism. From the results, a flow stress reduction ratio diagram was constructed. The diagram was divided into four regions with different softening mechanisms according to the stress–strain curve. Dynamic recrystallization was accompanied by two nucleation mechanisms: continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization, and the effect of CDRX decreased with increasing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shen L, Li Z, Dong Q, Xiao Z, and Chen, C, J Mater Res 31 (2016) 1113.

    Article  Google Scholar 

  2. Zhang Y, Tian B, Volinsky A A, Chen X, Sun H, Chai Z, Liu P, and Liu Y, J Mater Res 31 (2016) 1275.

    Article  Google Scholar 

  3. Batra I S, Dey G K, Kulkarni U D, and Banerjee S, J Nucl Mater 299 (2001) 91.

    Article  Google Scholar 

  4. Liu Q, Zhang X, Ge Y, Wang J, and Cui Z J, Metall Mater Trans A 37 (2006) 3233.

    Article  Google Scholar 

  5. Shangina D V, Bochvar N R, Gorshenkov M V, Yanar H, Purcek G, and Dobatkin S V, Mater Sci Eng A 650 (2016) 63.

    Article  Google Scholar 

  6. Zhang S, Li R, Kang H, Chen Z, Wang W, Zou C, and Wang T, Mater Sci Eng A 680 (2017) 108.

    Article  Google Scholar 

  7. Sun L X, Tao N R, and Lu K, Scr Mater 99 (2015) 73.

    Article  Google Scholar 

  8. Wang W, Li R, Zou C, Chen Z, Wen W, Wang T, and Yin G, Mater Des 92 (2016) 135.

    Article  Google Scholar 

  9. Lin G B, Wang Z D, Zhang M K, Zhang H, and Zhao M, Mater Sci Technol 27 (2011) 966.

    Article  Google Scholar 

  10. Islamgaliev R K, Sitdikov V D, Nesterov K M, and Pankratov D L, Rev Adv Mater Sci 39 (2014) 61.

    Google Scholar 

  11. Liu Y, Li Z, Jiang Y, Zhang Y, Zhou Z, and Lei Q, J Mater Res 32 (2017) 1324.

    Article  Google Scholar 

  12. Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, and Zhou G S, Met Mater Int 13 (2007) 25.

    Article  Google Scholar 

  13. Raabe D, Miyake K, and Takahara H, Mater Sci Eng A 291 (2000) 186.

    Article  Google Scholar 

  14. Liu K, Lu D, Zhou H, Yang Y, Atrens A, and Zou J, J Mater Eng Perform 22 (2013) 3723.

    Article  Google Scholar 

  15. Raabe D, and Ge J, Scr Mater 51 (2004) 915.

    Article  Google Scholar 

  16. Muramatsu N, and Akaiwa M, Mater Trans 57 (2016) 1794.

    Article  Google Scholar 

  17. Pinheiro I P, Barbosa R, and Cetlin P R, Mater Sci Eng A 457 (2007) 90.

    Article  Google Scholar 

  18. Shi C, Lai J, and Chen X, Mater 7 (2014) 244.

    Article  Google Scholar 

  19. Zeng Z, Chen L, Zhu F, and Liu X, J Mater Sci Technol 27 (2011) 913.

    Article  Google Scholar 

  20. Peng Y H, Li D Y, Wang Y C, Yin J L, and Zeng X Q, Mater Sci Forum 488 (2005) 393.

    Google Scholar 

  21. Quan G Z, Pan J, Wang X, Zhang Z H, Zhang L, and Wang T, Mater Sci Eng A 679 (2017) 358.

    Article  Google Scholar 

  22. Chen Y Y, Li B H, and Kong F T, Trans Nonferrous Met Soc China 17 (2007) 58.

    Article  Google Scholar 

  23. Kashihara K, Konishi H, and Shibayanagi T, Mater Sci Eng A 528 (2011) 8443.

    Article  Google Scholar 

  24. Yang Q, Deng Z, Zhang Z, Liu Q, Jia Z, and Huang G, Mater Sci Eng A 662 (2016) 204.

    Article  Google Scholar 

  25. Shi Z X, Yan X F, Duan C H, and Zhao M H, Trans Nonferrous Met Soc China 27 (2017) 538.

    Article  Google Scholar 

  26. Zhang H, Zhang K, Zhou H, Lu Z, Zhao C, and Yang X, Mater Des 80 (2015) 51.

    Article  Google Scholar 

  27. Li D, Guo Q, Guo S, Peng H, and Wu Z, Mater Des 32 (2011) 696.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2016YFB0301400). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Qi or Hongjin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cao, Y., Huang, C. et al. Microstructure Evolution and Softening Mechanism During Hot Deformation of Cu–0.19Cr–0.1Ag Alloy. Trans Indian Inst Met 72, 1043–1051 (2019). https://doi.org/10.1007/s12666-019-01579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01579-2

Keywords

Navigation