Skip to main content

Advertisement

Log in

Conventionally Sintered Hydroxyapatite–Barium Titanate Piezo-Biocomposites

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The central goal of this initial effort is to develop and characterize distinctive piezo-biocomposites as load-bearing orthopedic implants. The motivation is derived from the fact that mammalian bone is a piezoelectric material and this property is helpful in the natural healing of fractured bone. We have employed a cost-effective and industrially viable technique—conventional sintering to consolidate specific compositions of hydroxyapatite (HA) and barium titanate (BT). HA is the primary mineral constituent of mammalian bone but is not piezoelectric. On the contrary, BT is well known for its piezoelectric properties. Their combination creates piezo-biocomposites. The sintering is reactive in nature as BT decomposes into several compounds. Average grain sizes of piezo-biocomposites lie in the range of 1.75–1.9 µm. Interestingly, 15% compressive strength enhancement is noted in the case of HA-40 wt% BT as compared to HA. In vitro examinations reveal favorable bioactivity and biocompatible nature of the composites. These results show that conventionally sintered HA-BT piezo-biocomposites can qualify as candidate materials for load-bearing implants at affordable prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon J, and Simon B, Electrical bone stimulation. In Musculoskeletal Tissue Regeneration Human Press (2008) 259.

  2. Carrodeguas R G, V’ zquez B, del Barrio J S R, and de la Cal A M, Int J Polym Mater 51 (2002) 591.

  3. Fukada E, and Yasuda I, J Phys Soc Jpn 12 (1957) 1158.

    Article  Google Scholar 

  4. Fukada E, and Yasuda I, Jpn J Appl Phys 3 (1964) 117.

    Article  Google Scholar 

  5. Bassett C A L, and Becker R O, Science 137 (1962) 1063.

    Article  Google Scholar 

  6. Bassett C A L, Sci Am 213 (1965) 18.

    Article  Google Scholar 

  7. Fredericks D C, Smucker J, Petersen E B, Bobst J A, Gan J C, Simon B J, and Glazer P, Spine 32 (2007) 174.

    Article  Google Scholar 

  8. Dubey A K, EA A, Balani K, and Basu B, J Am Ceram Soc 96 (2013) 3753.

    Article  Google Scholar 

  9. Akao M, Aoki H, and Kato K, J Mater Sci 16 (1981) 809.

    Article  Google Scholar 

  10. Bellucci D, Desogus L, Montinaro S, Orrù R, Cao G, and Cannillo V, J Eur Ceram Soc 37 (2017) 1723.

    Article  Google Scholar 

  11. Karimzadeh A, Ayatollahi M R, Bushroa A R, and Herliansyah M K, Ceram Int 40 (2014) 9159.

    Article  Google Scholar 

  12. Park J B, Von Recum A F, Kenner G H, Kelly B J, Coffeen W W, and Grether M F, J Biomed Mater Res Part A 14 (1980) 269.

    Article  Google Scholar 

  13. Jianqing F, Huipin Y, and Xingdong Z, Biomaterials 18 (1997) 1531.

    Article  Google Scholar 

  14. Park J B, Kelly B J, Kenner G H, Von Recum A F, Grether M F, and Coffeen W W, J Biomed Mater Res Part A 15 (1981) 103.

    Article  Google Scholar 

  15. Nacer R S, Silva B A K D, Poppi R R, Silva D K M, Cardoso V S, Delben J R J, and Delben A A S T, Acta Cir Bras 30 (2015) 255.

    Article  Google Scholar 

  16. Dubey A K, Thrivikraman G, and Basu B, J Mater Sci Mater Med 26 (2015) 1.

    Google Scholar 

  17. Dubey A K, and Basu B, J Am Ceram Soc 97 (2014) 481.

    Article  Google Scholar 

  18. Grether M F, Coffeen W W, Kenner G H, and Park J B, Biomater Med Devices Artif Organs 8 (1980) 265.

    Article  Google Scholar 

  19. Park Y J, Hwang K S, Song J E, Ong J L, and Rawls H R, Biomaterials 23 (2002) 3859.

    Article  Google Scholar 

  20. Ciofani G, Ricotti L, Canale C, D’Alessandro D, Berrettini S, Mazzolai B, and Mattol, V, Coll Surf B Biointerfaces 102 (2013) 312.

    Article  Google Scholar 

  21. Ciofani G, Danti S, D’Alessandro D, Moscato S, Petrini M, and Menciassi A, Nanoscale Res Lett 5 (2010) 1093.

    Article  Google Scholar 

  22. Dubey A K, and Kakimoto K I, Mater Sci Eng C 63 (2016) 211.

    Article  Google Scholar 

  23. Mallik P K, and Basu B, J Biomed Mater Res Part A 102 (2014) 842.

    Article  Google Scholar 

  24. Thrivikraman G, Mallik P K, and Basu B, Biomaterials 34 (2013) 7073.

    Article  Google Scholar 

  25. Ravikumar K, Mallik P K, and Basu B, J Eur Ceram Soc 36 (2016) 805.

    Article  Google Scholar 

  26. Prakasam M, Albino M, Lebraud E, Maglione M, Elissalde C, and Largeteau A, J Am Ceram Soc 100 (2017) 2621.

    Article  Google Scholar 

  27. Koju N, Sikder P, Gaihre B, and Bhaduri S B, Materials 11 (2018) 1258.

    Article  Google Scholar 

  28. Ruys A J, Wei M, Sorrell C C, Dickson M R, Brandwood A, and Milthorpe B K, Biomaterials 16 (1995) 409.

    Article  Google Scholar 

  29. Champion E, Acta Biomater 9 (2013) 5855.

    Article  Google Scholar 

  30. Sikder P, Sarkar S, Biswas KG, Das S, Basu S, and Das PK, Mater Chem Phys 170 (2016) 99.

    Article  Google Scholar 

  31. Sikder P, Pramanick A, Sarkar S, Das S, Dey P P, and Das P K. Adv Appl Ceram 114 (2015) 448.

    Article  Google Scholar 

  32. Boroujeni N M, Zhou H, Luchini T J F, and Bhaduri S B, J Biomed Mater Res Part B 102 (2014) 260.

    Article  Google Scholar 

  33. Spiegler R, Schmauder S, and Sigl L S, J Hard Mater 1 (1990) 147.

    Google Scholar 

  34. Jalota S, Bhaduri S B, and Tas A C, J Mater Sci Mater Med 17 (2006) 697.

    Article  Google Scholar 

  35. Sikder P, Koju N, Ren Y, Goel V K, Phares T, Lin B, and Bhaduri S B, Surf Coat Technol 342 (2018) 342.

    Article  Google Scholar 

  36. Zhou H, Luchini T J F, Boroujeni N M, Agarwal A K, Goel V K, and Bhaduri S B, Mater Sci Eng C 50 (2015) 45.

    Article  Google Scholar 

  37. Sikder P, Grice C R, Lin B, Goel V K, and Bhaduri S B, ACS Biomater Sci Eng 4 (2018) 2767.

    Article  Google Scholar 

  38. Rehman I, and Bonfield W, J Mater Sci Mater Med 8 (1997) 1.

    Google Scholar 

  39. Sikder P, and Bhaduri S B, J Am Ceram Soc 101 (2018) 2537.

    Article  Google Scholar 

  40. Koju N, Sikder P, Ren Y, Zhou H, and Bhaduri S B, Curr Opin Chem Eng 15 (2017) 49.

    Article  Google Scholar 

  41. Monmaturapoj N, and Yatongchai C, J Metals Mater Miner 20 (2017).

  42. Dubey A K, Mallik P K, Kundu S, and Basu B, J Eur Ceram Soc 33 (2013) 3445.

    Article  Google Scholar 

  43. Ren Y, Sikder P, Lin B, and Bhaduri S B, Mater Sci Eng C 85 (2018) 107.

    Article  Google Scholar 

  44. Baxter F R, Turner I G, Bowen C R, Gittings J P, and Chaudhuri J B, J Mater Sci Mater Med 20 (2009) 1697.

    Google Scholar 

Download references

Acknowledgements

SBB is humbled by being able to contribute to this issue in honor of Prof. E. C. Subbarao. He has many fond memories of interactions during many trips that occurred between DMRL, Hyderabad, and TRDDC, Pune, between years 1983 and 1989. This work was supported by the NSF Grant No. 1706513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabaha Sikder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikder, P., Koju, N., Lin, B. et al. Conventionally Sintered Hydroxyapatite–Barium Titanate Piezo-Biocomposites. Trans Indian Inst Met 72, 2011–2018 (2019). https://doi.org/10.1007/s12666-018-1533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1533-3

Keywords

Navigation