Skip to main content
Log in

Simulation of Intermetallic Solidification Using Phase-Field Techniques

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. SGTE - Scientific Group Thermodata Europe, see www.sgte.net/en/about-sgte.

  2. Choudhury A, Kellner M, and Nestler B, Curr Opin Solid State Mater Sci 19 (2015) 287.

    Article  CAS  Google Scholar 

  3. Ohno M, Takaki T, and Shibuta Y, Phys Rev E 96 (2017) 33311.

    Article  Google Scholar 

  4. Taylor J E, and Cahn J W, Physica D 112 (1998) 381.

    Article  CAS  Google Scholar 

  5. Eggleston J J, McFadden G B, and Voorhees P W, Physica D 150 (2001) 91.

    Article  CAS  Google Scholar 

  6. Debierre J-M, Karma A, Celestini F, and Guerin R, Phys Rev E 68 (2003) 041604.

    Article  Google Scholar 

  7. Choi J, Park S-K, Hwang H-Y, and Huh J-Y, Acta Mater 84 (2015) 55.

    Article  CAS  Google Scholar 

  8. Abinandanan T A, and Haider F, Philos Mag A 81 (2001) 2457.

    Article  CAS  Google Scholar 

  9. Nani E S, and Gururajan M P, Philos Mag 94 (2014) 3331.

    Article  CAS  Google Scholar 

  10. Karma A, Phys Rev Lett 87 (2001) 115701.

    Article  CAS  Google Scholar 

  11. Galenko P K, Abramova E V, Jou D, Danilov D A, Lebedev V G, and Herlack D M, Phys Rev E 84 (2011) 041143.

    Article  CAS  Google Scholar 

  12. Mullis A M, Int. J. Heat Mass Transf 40 (1997) 4085.

    Article  CAS  Google Scholar 

  13. Zhang L, Danilova E V, Steinbach I, Medvedev D, and Galenko, P K, Acta Mater 61 (2013) 4155.

    Article  CAS  Google Scholar 

  14. Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 126 (2016) 426.

    Article  Google Scholar 

  15. Bollada P C, Goodyer C E, Jimack P K, Mullis A M, and Yang F W, J Comput Phys 287 (2015) 130.

    Article  CAS  Google Scholar 

  16. Brandt A, Math Comput 31 (1977) 333.

    Article  Google Scholar 

  17. MacNeice P, Olson K M, Mobarry C, de Fainchtein R, and Packer C, Comput Phys Commun 126 (2000) 330.

    Article  CAS  Google Scholar 

  18. Redlich O, and Kister A, Ind Eng Chem 40 (1948) 345.

    Article  Google Scholar 

  19. Lengsdorf R, Holland-Moritz D, and Herlach D M, Acta Mater 62 (2009) 365.

    Google Scholar 

  20. Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 151 (2018) 338.

    Article  CAS  Google Scholar 

  21. Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 144 (2018) 76.

    Article  CAS  Google Scholar 

  22. Liu R B, Herlach D M, Vandyiousse M, and Greer A L, Metal Mat Trans A 35 (2003) 1067.

    Article  Google Scholar 

  23. Battersby S E, Cochrane R F, and Mullis A M, Mater Sci Eng A 226 (1997) 443.

    Article  Google Scholar 

  24. Battersby S E, Cochrane R F, and Mullis A M, J Mater Sci 34 (1999) 2049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by EPSRC Innovative Manufacturing Research Hub in Liquid Metal Engineering (LiME), Grant No. EP/N007638/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mullis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullis, A.M., Bollada, P.C. & Jimack, P.K. Simulation of Intermetallic Solidification Using Phase-Field Techniques. Trans Indian Inst Met 71, 2617–2622 (2018). https://doi.org/10.1007/s12666-018-1428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1428-3

Keywords

Navigation