Skip to main content
Log in

RETRACTED ARTICLE: Effect of Material Position and Ultrasonic Vibration on Mechanical Behaviour and Microstructure of Friction Stir-Welded AA7075-T651 and AA6061 Dissimilar Joint

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

This article was retracted on 18 October 2019

This article has been updated

Abstract

In this research work, friction stir welding of dissimilar AA7075-T651 and AA6061 aluminium alloys has been carried out by varying the material position and power of ultrasonic vibration (UV). Material flow, microstructure, hardness and tensile properties of the weld joint were mainly discussed . Results showed that the position of an AA7075-T651 material in the advancing side and ultrasonic power of 1.5 kW exhibited maximum tensile strength, hardness and bending strength. Elongation decreased with an increase in UV power. When using 1.5 kW UV power, the formation of multiple vortexes and distinct layers in the weld nugget zone improved the dissimilar joint property. A micro-void formation resulted from the lack of material filling and excessive turbulence when the UV power increased to 2 kW. The maximum compressive load of 50 kN was attained for the bending angle of 44° at 1.5 kW UV power. On increasing the ultrasonic power, dimples elongated and glided along the weld zone to cause void and tunnel formation .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

  • 18 October 2019

    The Editor-in-Chief has retracted this article [1] because the eight cross-sectional macrographs shown in Table��3 are identical with cross-sectional macrographs that are part of Figure 1 in the article by Reza-E-Rabby et al. [2] which presents the results of a study using different tools and welding parameters. The data reported in this article are therefore unreliable. Darshan Rajesekaran and Yuvaraj Kunnathur Periyasamy do not agree with this retraction; Ashoka Varthanan Perumal has not replied to correspondence about this retraction.

  • 18 October 2019

    The Editor-in-Chief has retracted this article [1] because the eight cross-sectional macrographs shown in Table��3 are identical with cross-sectional macrographs that are part of Figure 1 in the article by Reza-E-Rabby et al. [2] which presents the results of a study using different tools and welding parameters. The data reported in this article are therefore unreliable. Darshan Rajesekaran and Yuvaraj Kunnathur Periyasamy do not agree with this retraction; Ashoka Varthanan Perumal has not replied to correspondence about this retraction.

References

  1. Das U, Toppo V, Sahoo T K, and Sahoo R, Trans Indian Inst Metals 71 (2018) 823.

    CAS  Google Scholar 

  2. Heidarzadeh A, Barenji R V, Esmaily M, and Ilkhichi A R, Trans Indian Inst Metals 68 (2015) 757.

    CAS  Google Scholar 

  3. Amini S, Amiri M R, and Barani A, Int J Adv Manuf Techol 76 (2014) 255.

  4. Shiraly M, Shamanian M, Toroghinejad M R, Jazani M A, and Sadreddini S, Trans Indian Inst Metals 70 (2017) 2205.

    CAS  Google Scholar 

  5. Ragu Nathan S, Balasubramanian V, Malarvizhi S, and Rao A G, Trans Indian Inst Metals 69 (2016) 1861.

    CAS  Google Scholar 

  6. Sevvel P, and Jaiganesh V, Trans Indian Inst Metals 68 (2015) 41.

    Google Scholar 

  7. Marzbanrad J, Akbari M, Asadi P, and Safaee S, Metall Mater Trans B 45 (2014) 1887.

    CAS  Google Scholar 

  8. Vijay S J, and Murugan N, Mater Des 31 (2010) 3585.

    CAS  Google Scholar 

  9. Liu Z, Yue Y, Zhang W, and Xing J, Trans Indian Inst Metals (2018). https://doi.org/10.1007/s12666-018-1360-6.

    Article  Google Scholar 

  10. Khodaverdizadeh H, Heidarzadeh A, and Saeid T, Mater Des 45 (2013) 265.

    CAS  Google Scholar 

  11. Patel V V, Badheka V J, and Kumar A, Trans Indian Inst Metals 70 (2017) 1151.

    CAS  Google Scholar 

  12. Ilangovan M, Rajendra Boopathy S, and Balasubramanian V, Def Technol 11 (2015) 174.

    Google Scholar 

  13. Elangovan K, and Balasubramanian V, Mater Sci Eng A 459 (2007) 7.

    Google Scholar 

  14. Felix Xavier Muthu M, and Jayabalan V, Trans Nonferrous Metals Soc China (English Edition) 26 (2016) 984.

    CAS  Google Scholar 

  15. Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, and Titrashi K G, Int J Adv Manuf Technol 78 (2015) 2009.

    Google Scholar 

  16. Liu X, Wu C, and Padhy G K, Scr Mater 102 (2015) 95.

    Google Scholar 

  17. Liu X C and Wu C S, Mater Des 90 (2016) 350.

    CAS  Google Scholar 

  18. Lv X, Wu C S, Yang C, and Padhy G K, J Mater Process Technol 254 (2018) 145.

    CAS  Google Scholar 

  19. Ma H K, He D Q, and Liu J S, Sci Technol Weld Join 20 (2015) 216.

    CAS  Google Scholar 

  20. Alinaghian I, Honarpisheh M, and Amini S, Int J Adv Manuf Technol 95 (2018) 2757.

    Google Scholar 

  21. Amini S, and Amiri M R, Int J Adv Manuf Technol 73 (2014) 127.

    Google Scholar 

  22. Ji S, Meng X, Liu Z, Huang R, and Li Z, Mater Lett 201 (2017) 173.

    CAS  Google Scholar 

  23. Ruilin L, Diqiu H, Luocheng L, Shaoyong Y, and Kunyu Y, Int J Adv Manuf Technol 73 (2014) 321.

    Google Scholar 

  24. Shi L, Wu C S, Liu X C, J Mater Process Technol 222 (2015) 91.

    CAS  Google Scholar 

  25. Zhong Y B, Wu C S, and Padhy G K, J Mater Process Technol 239 (2017) 273.

    CAS  Google Scholar 

  26. Sahu P K, Pal S, Pal S K, Jain R, J Mater Process Technol 235 (2016) 55.

    CAS  Google Scholar 

  27. Gao S, Wu C S, and Padhy G K, Sci Technol Weld Join (2018). https://doi.org/10.1080/13621718.2018.1476084.

    Article  Google Scholar 

  28. Yuvaraj K P, Varthanan P A, and Rajendran C, Int J Comput Mater Sci Surf Eng 7 (2018) 130.

    Google Scholar 

  29. Li H, Zhang J, and Xiong Y, Sci Technol Weld Join 23 (2018) 308.

    CAS  Google Scholar 

  30. Shanmuga Sundaram N, and Murugan N, Mater Des 31 (2010) 4184.

    Google Scholar 

  31. Lakshminarayanan A K, Balasubramanian V, and Elangovan K, Int J Adv Manuf Technol 40 (2009) 286.

    Google Scholar 

  32. Babu S, Elangovan K, Balasubramanian V, and Balasubramanian M, Metals Mater Int 15 (2009) 321.

    CAS  Google Scholar 

  33. Aliha M R M, Shahheidari M, Bisadi M, Akbari M, and Hossain S, Int J Adv Manuf Technol 86 (2016) 2551.

    Google Scholar 

  34. Saravanan V, Rajakumar S, Banerjee N, and Amuthakkannan R, Int J Adv Manuf Technol 87 (2016) 2337.

    Google Scholar 

  35. Sabari S S, Malarvizhi S, and Balasubramanian V, Int J Mech Mater Eng 11 (2016) 5.

    Google Scholar 

  36. Hajihashemi M, Shamanian M, and Niroumand B, Sci Technol Weld Join 21 (2016) 493.

    CAS  Google Scholar 

  37. Sun T, Tremsin A S, Roy M J, Hofmann M, Prangnell P B, and Withers P J, Mater Sci Eng A 712 (2018) 531.

    CAS  Google Scholar 

  38. Zeng X H, Xue P, Wang D, Ni D R, Xiao B L, Wang K S, and Ma Z Y, Sci Technol Weld Join (2018). https://doi.org/10.1080/13621718.2018.1471844.

    Article  Google Scholar 

  39. Kadlec M, Ru˚žek R, and Nováková L, Int J Fatigue 74 (2015) 7.

    CAS  Google Scholar 

  40. Reza-E-Rabby M, Tang W, and Reynolds A P, Sci Technol Weld Join 20 (2015) 425.

    CAS  Google Scholar 

  41. Golezani A S, Barenji R V, Heidarzadeh A, and Pouraliakbar H, Int J Adv Manuf Technol 81 (2015) 1155.

    Google Scholar 

  42. Giraud L, Robe H, Claudin C, Desrayaud C, Bocher P, and Feulvarch E, J Mater Process Technol 235 (2016) 220.

    CAS  Google Scholar 

  43. Daniolos N M, and Pantelis D I, Int J Adv Manuf Technol 88 (2017) 2497.

    Google Scholar 

  44. Liu Z, Meng X, Ji S, Li Z, and Wang L, J Manuf Process 31 (2018) 552.

    Google Scholar 

  45. Yang, J W, Cao B, He X C, and Luo H S, Sci Technol Weld Join 19 (2014) 500.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuvaraj Kunnathur Periyasamy.

Additional information

The Editor-in-Chief has retracted this article [1] because the eight cross-sectional macrographs shown in Table 3 are identical with cross-sectional macrographs that are part of Figure 1 in the article by Reza-E-Rabby et al. [2] which presents the results of a study using different tools and welding parameters. The data reported in this article are therefore unreliable. Darshan Rajesekaran and Yuvaraj Kunnathur Periyasamy do not agree with this retraction, Ashoka Varthanan Perumal has not replied to correspondence about this retraction.

[1] Kunnathur Periyasamy, Y., Perumal, A.V. and Rajasekaran, Effect of Material Position and Ultrasonic Vibration on Mechanical Behaviour and Microstructure of Friction Stir-Welded AA7075-T651 and AA6061 Dissimilar Joint,D. Trans Indian Inst Met (2018) 71: 2575. https://doi.org/10.1007/s12666-018-1389-6

[2] Md. Reza-E-Rabby, W. Tang and A. P. Reynolds (2015) Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys, Science and Technology of Welding and Joining, 20:5, 425-432, DOI: 10.1179/1362171815Y.0000000036

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunnathur Periyasamy, Y., Perumal, A.V. & Rajasekaran, D. RETRACTED ARTICLE: Effect of Material Position and Ultrasonic Vibration on Mechanical Behaviour and Microstructure of Friction Stir-Welded AA7075-T651 and AA6061 Dissimilar Joint. Trans Indian Inst Met 71, 2575–2591 (2018). https://doi.org/10.1007/s12666-018-1389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1389-6

Keywords

Navigation