Skip to main content
Log in

Proton Irradiation Induced Hardening and Its Recovery During Healing Treatment of Modified 9Cr–1Mo Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current paper identifies the mechanism of hardening of modified 9Cr–1Mo steel during 3 MeV proton irradiation and softening during healing treatment. The steel, when irradiated with 3 MeV protons to a dose of 0.14 dpa, showed a significant increase in hardness up to certain depth, followed by a decrease. The peak hardness appeared at a depth of 35–40 µm, which matched with the depth at which defect density was maximum as calculated using SRIM2003 code. Rietveld analysis of X-ray diffraction patterns from different depths confirmed that the defect density doubled at the subsurface after irradiation. Annealing the irradiated steel at 823 K for 30 min could partially reduce the defect density and hence, soften the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Nucl Eng Technol 45 (2013) 311.

    Article  Google Scholar 

  2. Garner F A, Toloczko M B, and Sencer B H, J Nucl Mater 276 (2000) 123.

    Article  Google Scholar 

  3. Wang X, Yan Q, Was G S, and Wang L, Scr Mater 112 (2016) 9.

    Article  Google Scholar 

  4. Baluc N, Schäublin R, Spätig P, Victoria M, Nucl Fusion 44 (2004) 56.

    Article  Google Scholar 

  5. Klueh R L, Nelson A T, J Nucl Mater 371 (2007) 37.

    Article  Google Scholar 

  6. Klueh R L, Harries D R, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (2001), p. 30, USA.

  7. Odette G R, J Nucl Mater 155–157 (1988) 921.

    Article  Google Scholar 

  8. Wall M, A review of thermal ageing effects in high chromium ferritic steels, UKAEA report R-12812, Harwell Laboratory (1987).

  9. Pugh S F, An Introduction to Grain Boundary Fracture in Metals, The Inst. of Metals, London (1991).

    Google Scholar 

  10. Alexander D J, Maziasz P J, Brinkman C R, in: Microstructures amd Mechanical Properties of Ageing Materials, (ed) Liaw R V P K , Murty K L, Simonen E P, and Frear D, The Minerals, Metals and Materials Society, Warendale, PA (1993), p. 343.

    Google Scholar 

  11. Sokolov M A, Tanigawa H, Odette G R, Shiba K, Klueh R L, J Nucl Mater 367–370 (2007) 68.

    Article  Google Scholar 

  12. Vitek J M, Corwin W R, Klueh R L, Hawthorne J R, J Nucl Mater 141–143 (1986) 948.

    Article  Google Scholar 

  13. Ando M, Tanigawa H, Jitsukawa S, Sawai T, Katoh Y, Kohyama A, Nakamura K, Takeuchi H, J Nucl Mater 307–311 (2002) 260.

    Article  Google Scholar 

  14. Schaeublin R, Gelles D, Victoria M, J Nucl Mater 307–311 (2002) 197.

    Google Scholar 

  15. Kai J J, Klueh R L, J Nucl Mater 230 (1996) 116.

    Article  Google Scholar 

  16. Maziasz P J, Klueh R L, Vitek J M, J Nucl Mater 141–143 (1986) 929.

    Google Scholar 

  17. Little E A, J Nucl Mater 206 (1993) 324.

    Article  Google Scholar 

  18. Faulkner R G, Song S, Flewitt P E J, J Nucl Mater 212–215 (1994) 608.

    Google Scholar 

  19. Belianov I, Marmy P, J Nucl Mater 258–263 (1998) 1259.

    Google Scholar 

  20. Klueh R L, Alexander D J, Effects of Radiation on Materials, in (ed) Stoller R E, Kumar A S, D.S. Gelles, 15th International Symposium, ASTM STP 1125, (American Society for Testing and Materials, Philadelphia, 1992) 1256.

  21. Klueh R L, Alexander D J, J Nucl Mater 258–263 (1998) 1269.

    Google Scholar 

  22. Hu W L, Gelles D S, Influence of Radiation on Material Properties, in (ed) Garner F A, Henegar J C H, Igata N, 13th International Symposium (Part II), ASTM STP 956, (American Society for Testing Materials, Philadelphia, 1987) 83.

  23. Spätig P, Schäublin R, Gyger S, Victoria M, J Nucl Mater 258–263 (1998) 1345.

    Google Scholar 

  24. Wassilew C, Ehrlich K, J Nucl Mater 191–194 (1992) 850.

    Article  Google Scholar 

  25. W L Hu, D S Gelles, in (ed) Garner C H H J F A, Igata N, Influence of Radiation on Material Properties, American Society for Testing and Materials, Philadelphia, PA (1987), p. 83.

    Google Scholar 

  26. Potapovs U, Knighton G W, Denton A S, Nucl Eng Des 8 (1968) 39.

    Article  Google Scholar 

  27. Fabry A, Research to understand the embrittlement behavior of Yankee/BR3 surveillance plate, in (ed) Nanstad D G A R, Effects of Radiation on Materials, 17-th International Symposium West Conshohocken, USA (1996), p. 138.

  28. Khabarov V S, Dvoriashin A M, Porollo S I, J Nucl Mater 233–237 (1996) 236.

    Google Scholar 

  29. Zhang Z W, Liu C T, Wang X L, Miller M K, Ma D, Chen G, Williams J R, Chin B A, Acta Mater 60 (2012) 3034.

    Article  Google Scholar 

  30. Gupta G, Jiao Z, Ham A N, Busby J T, Was G S, J Nucl Mater 351 (2006) 162.

    Article  Google Scholar 

  31. Ziegler J F, The stopping and range of ions in solids/Ziegler J F, Biersack J P, Littmark U, Pergamon, New York, (1985).

  32. Rietveld H, Acta Crystallogr 22 (1967) 151.

    Article  Google Scholar 

  33. Williamson G K, Smallman R E, Philos Mag 1 (1956) 34.

    Article  Google Scholar 

  34. Sarkar A, Nagesha A, Parameswaran P, Murugesan S, Sandhya R, Laha K, Mater Sci Eng A 660 (2016) 225.

    Article  Google Scholar 

  35. Pešička J, Kužel R, Dronhofer A, Eggeler G, Acta Mater 51 (2003) 4847.

    Article  Google Scholar 

  36. Thomas Paul V, Saroja S, Vijayalakshmi M, J Nucl Mater 378 (2008) 273.

    Article  Google Scholar 

  37. Hamaguchi Y, Kuwano H, Kamide H, Miura R, Yamada T, J Nucl Mater 133–134 (1985) 636.

    Article  Google Scholar 

  38. ASTM, Annual book of ASTM Standards, Vol. 12.02 (1993), p. 171.

  39. Jiao Z, Hesterberg J, Was G S, J Nucl Mater 500 (2018) 220.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the keen and constant encouragement shown by Dr. S. Raju, Head, PMD, Dr. Saroja Saibaba, AD, MCG, Dr. G. Amarendra, Director, Metallurgy and Materials Group, Dr. A.K Bhaduri, Director, IGCAR and Dr. M. Vijayalakshmi, former AD, PMG in the pursuit of their studies on present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thomas Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, V.T., Sundaravel, B., Murugesan, S. et al. Proton Irradiation Induced Hardening and Its Recovery During Healing Treatment of Modified 9Cr–1Mo Steel. Trans Indian Inst Met 71, 2293–2301 (2018). https://doi.org/10.1007/s12666-018-1361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1361-5

Keywords

Navigation