Skip to main content
Log in

Effect of Destabilisation Period and Post Destabilisation Cooling Rate on the Evolution of Microstructure in 8.0 wt% Chromium White Cast Iron

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To study the effect of destabilisation period and post-destabilisation cooling rate on the as-cast microstructure, continuous annealing involving prolonged austenitisation for 4 h followed by furnace cooling and cyclic annealing using repeated austenitisation, each of 0.66 h duration, followed by forced-air cooling were carried out at 900, 950, 1000, 1050 and 1100 °C on a 8.0 wt% chromium white iron. Destabilised microstructures show precipitation of secondary carbides on a pearlite plus martensite matrix after continuous annealing treatment and on a martensite plus austenite matrix after cyclic annealing treatment. Both the treatments exhibit characteristic role in monitoring the size and distribution of the secondary carbides and also in modifying the eutectic pattern with varying annealing temperature. At higher temperatures of 1050 and 1100 °C, absence of the secondary carbides becomes a common feature for both the heat treatments; while fragmentation of the eutectic carbides happens to be an additional feature after cyclic annealing of the as-cast alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ASTM A53287 ‘Standard specification for abrasionresistant cast irons’, ASTM, Philadelphia.

  2. Tabrett C P, and Sare I R, Scripta Mater 38 (1998) 1747.

    Article  Google Scholar 

  3. Tabrett C P, and Sare I R, Wear 203–204 (1997) 206.

    Article  Google Scholar 

  4. Zum Gahr K H, and Eldis G T, Wear 64 (1980)175.

    Article  Google Scholar 

  5. Inthidech S, Sricharsenchai P, and Matsubara Y, Mater Trans 47 (2006) 72.

    Article  Google Scholar 

  6. Zhi X, Xing J, Gao Y, Fu H, Peng J, and Xiao B, Mater Sci Eng A 487 (2008) 171.

    Article  Google Scholar 

  7. Pearce J T H, Trans AFS 92 (1984) 599.

    Google Scholar 

  8. Laird G II, Rawers J C, and Adams A, Metall Mater Trans 23A (1992) 2941.

    Article  Google Scholar 

  9. Wiengmoon A, Pearce J T H, and Chairuangsri T, Mater Chem Phys 125 (2011) 739.

    Article  Google Scholar 

  10. Maratray F, and Poulation A, Trans AFS 90 (1982) 795.

    Google Scholar 

  11. Powell G L F, and Laird G II, J Mater Sci 27 (1992) 29.

    Article  Google Scholar 

  12. Kuwano M, and Ogi K, AFS Trans 166 (1990) 725.

    Google Scholar 

  13. Yang H S, Jun W, Shen B L, Liu H H, Gao S J, and Huang S J, Wear 261 (2006) 1150.

    Article  Google Scholar 

  14. Jacuinde A B, Bainforth M W, and Mejla I, Metall Mater Trans 44A (2013), 856.

  15. Durman R W, Br Foundrym 69 (1976) 141.

    Google Scholar 

  16. Zum Gahr K H, and Scholz W G, J Metall 38 (1980) 34.

    Google Scholar 

  17. Parks J L, Trans AFS 86 (1978) 93.

    Google Scholar 

  18. Liu H, Wang J, Shen B L, Yang H, Gao S, and Si-Jiu H, Mater Des 28 (2007) 1059.

    Article  Google Scholar 

  19. Wang J, Zuo R L, Sun Z P, Li C, Liu H, Yang H S, Shen B L, and Huang S J, Mater Charact 55 (2005) 234.

    Article  Google Scholar 

  20. Kosasu P, Inthidech S, Sriprateep K, and Matsubara Y, Mater Trans 57 (2016) 174.

    Article  Google Scholar 

  21. Speer J, Matlock D K, De Cooman B C, and Schroth J G, Acta Mater 51 (2003) 2611.

    Article  Google Scholar 

  22. Hsu T Y, Mater Sci Forum 561 (2007) 2283.

    Article  Google Scholar 

  23. Zuo X W, Chen N L, Gao F, and Rong Y H, Int Heat Treat Surf Eng 8 (2014) 15.

    Article  Google Scholar 

  24. Jia X, Hao Q, Zuo X, Chen N, and Rong Y, Mater Sci Eng A 618 (2014) 96.

    Article  Google Scholar 

  25. Jia X, Zuo X, Liu Y, Chen N, and Rong Y, Metall Mater Trans 46A (2015) 5514.

    Article  Google Scholar 

  26. Tabrett C P, Sare I R, and Ghomaschi M R, Int Mater Rev 41 (1996) 59.

    Article  Google Scholar 

  27. Matsuo T T, Kiminami C S, Fo W J B, and Bolfarini C, Wear 259 (2005) 445.

    Article  Google Scholar 

  28. Lu B, Luo J, and Chiovelli S, Metall Mater Trans 37A (2006) 3029.

    Article  Google Scholar 

  29. Kim C K, Lee S, and Jung J Y, Metall Mater Trans 37A (2006) 633.

    Article  Google Scholar 

  30. Jacuinde A B, Correa R, Mejia I, Quezada J G, and Rainforth W M, Wear 263 (2007) 808.

    Article  Google Scholar 

  31. Correa R, Jacuinde A B, Silva J Z, Cardoso E, and Mejia I, Wear 267 (2009) 495.

    Article  Google Scholar 

  32. Chen X, and Li Y X, Mater Sci Eng A 528 (2010) 770.

    Article  Google Scholar 

  33. Penagos J J, Ono F, Albertin E, and Sinatora A, Wear 340341 (2015) 19.

    Article  Google Scholar 

  34. Gates J D, de Glas M, Lakeland K D, and Cristaudo J W, in Proc Australian Foundry Inst. annu conf ‘Where is the 90’s?’ Gold Coast, Qld Oct (1990), p 16.

  35. Durman R W, and Elwell D W J, UK Pat. No. 2167438A (1985).

  36. Saha A, Mondal D K, Maity J, J Mater Eng Perform 20 (2011) 114.

    Article  Google Scholar 

  37. Pearce J T H, Foundryman 95 (2002) 156.

    Google Scholar 

  38. Gasan H, and Erturk F, Metall Mater Trans 44A (2013) 4993.

    Article  Google Scholar 

  39. Inrahim K M, and Ibrahim M M, J Metall. 2014 (2014) 856408.

    Google Scholar 

  40. Saverna J, Schissler J M, and Masounave J, Bull Cercle Etud Metaux 15 (1989) 19.6.

    Google Scholar 

  41. Powell G L F, and Heard L S, in Proc conf ‘Metals in Mining’, Gold Cost, Qld May (1981), p 633.

  42. Wang J, Xiong J, Fan H, Yong H-S, Liu H-H, and Shen B-L, J Mater Process Technol 209 (2009) 3236.

    Article  Google Scholar 

  43. Wang J, Li C, Liu H, Yang H, Shen B, Gao S, and Huang S, Mater Charact 56 (2006) 73.

    Article  Google Scholar 

  44. Cullity B D, Elements of X-ray Diffraction, 2nd ed., Addison-Wisley Pub Co Inc, Boston (1978), p 412.

    Google Scholar 

  45. Tian Y L, and Kraft R W, Metall Mater Trans 18A (1987) 1403.

    Article  Google Scholar 

  46. Maity J, Saha A, Mondal D K, and Biswas K, Philos Mag Lett 93 (2013) 231.

    Article  Google Scholar 

  47. Speich G R, and Szirmac A, Trans Metall Soc AMIE 245 (1969)1063.

    Google Scholar 

  48. Kumar R, Physical Metallurgy of Iron and Steel, Asia Pub. House, Delhi (1968), p 92.

    Google Scholar 

  49. Wang Y P, Li D Y, Parent L, and Tian H, Wear 271 (2011) 1623.

    Article  Google Scholar 

  50. Haasen P, Physical Metallurgy, 3rd ed., Cambridge Univ. Press, Cambridge (1997), p 168.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director and Dean-Research & Consultancy, National Institute of Technology, Durgapur, India for supporting the current research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S.S., Ghosh, K.S. & Mondal, D.K. Effect of Destabilisation Period and Post Destabilisation Cooling Rate on the Evolution of Microstructure in 8.0 wt% Chromium White Cast Iron. Trans Indian Inst Met 71, 2067–2081 (2018). https://doi.org/10.1007/s12666-018-1341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1341-9

Keywords

Navigation