Skip to main content
Log in

Nano-size Particle Evolution During Heat Treatment of P91 Steel and Their Effect on Micro Hardness

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present research work, creep strength enhanced ferritic/martensitic P91 steel was subjected to varying normalizing (950–1150 °C) and tempering temperature (730–800 °C). The varying normalizing and tempering temperature effect on microstructure evolution (precipitate size and their distribution and grain size) and microhardness were performed. The heat treatment consequences on microstructure evolution revealed an increase in grain size, and decrease in fraction area of precipitates, with increase in normalizing temperature. The grain size was found to be decreased with increase in tempering temperature while fraction area of precipitates and precipitate diameter increased. For microstructure characterization, optical microscope and field emission scanning electron microscope were utilized. The microhardness was found to be increased with increase in normalizing temperature while it decreased with increase in tempering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klueh RL, Int Mater Rev 50 (2005).

    Article  Google Scholar 

  2. Kimura K, Sawada K, Kushima H, Toda Y, Procedia Eng [Internet]. 55 (2013). Available from: http://dx.doi.org/10.1016/j.proeng.2013.03.211.

  3. Kafexhiu F, Vodopivec F, Turna JV, Mater Tehnol 46 (2012).

    Google Scholar 

  4. Murty KL, Charit I, J Nucl Mater [Internet]. 383 (2008). Available from: http://dx.doi.org/10.1016/j.jnucmat.2008.08.044.

  5. Pandey C, Giri A, Mahapatra MM, Kumar P, Met Mater Int [Internet]. 23 (2017). Available from: http://link.springer.com/10.1007/s12540-017-6394-5.

  6. Pandey C, Mahapatra MM, J Mater Eng Perform 25 (2016).

    Article  Google Scholar 

  7. Pandey C, Mahapatra MM, J Mater Eng Perform [Internet]. 25 (2016). Available from: http://link.springer.com/10.1007/s11665-016-2064-x.

  8. Pandey C, Mahapatra MM, Kumar P, Saini N, J Eng Mater Technol [Internet]. (2017). Available from: http://materialstechnology.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035764.

  9. Ennis PJ, Czyrska-Filemonowicz A, Sadhana 28 (2003).

    Article  Google Scholar 

  10. Pandey C, Mahapatra MM, Kumar P, Vidyrathy RS, Srivastava A, Mater Sci Eng A [Internet]. 695 (2017). Available from: http://dx.doi.org/10.1016/j.msea.2017.04.037.

  11. Pandey C, Mahapatra MM, Trans Indian Inst Met (2016).

  12. Pandey C, Mahapatra MM, J Mater Eng Perform 25 (2016).

    Article  Google Scholar 

  13. Wang SS, Peng DL, Chang L, Hui XD, Mater Des [Internet]. 50 (2013). Available from: http://dx.doi.org/10.1016/j.matdes.2013.01.072.

  14. Maruyama K, Sawada K, Koike J, ISIJ Int [Internet]. 41 (2001). Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/isijinternational1989/41.641?from=CrossRef.

  15. Shen YZ, Kim SH, Cho HD, Han CH, Ryu WS, J Nucl Mater [Internet]. 400 (2010). Available from: http://dx.doi.org/10.1016/j.jnucmat.2010.02.010.

  16. Pandey C, Saini N, Mahapatra MM, Kumar P, Eng Fail Anal 71 (2017).

  17. Pandey C, Mahapatra M, Proc Inst Mech Eng Part E J Process Mech Eng [Internet]. 664 (2016). Available from: http://pie.sagepub.com/lookup/doi/10.1177/0954408916656678.

  18. Spigarelli S, Int J Press Vessel Pip [Internet]. 101 (2013). Available from: http://dx.doi.org/10.1016/j.ijpvp.2012.10.005.

  19. Paul VT, Saroja S, Vijayalakshmi M, J Nucl Mater 378 (2008).

    Article  Google Scholar 

  20. Wang Y, Kannan R, Li L, Mater Charact 118 (2016).

    Article  Google Scholar 

  21. Yan W, Wang W, Shan YY, Yang K, Front Mater Sci 7 (2013).

    Article  Google Scholar 

  22. Zavaleta Gutiérrez N, De Cicco H, Marrero J, Danón CA, Luppo MI, Mater Sci Eng A 528 (2011).

    Article  Google Scholar 

  23. Choudhary BK, Samuel EI, J Nucl Mater [Internet]. 412 (2011). Available from: http://dx.doi.org/10.1016/j.jnucmat.2011.02.024.

  24. Hu P, Yan W, Sha W, Wang W, Shan Y, Yang K, J Mater Sci Technol 27 (2011).

    Article  Google Scholar 

  25. Tkachev E, Odnobokova M, Kipelova A, Belyakov A, Kaibyshev R, Mater Sci Forum 879 (2016).

    Article  Google Scholar 

  26. Sawada K, Kubo K, Abe F, Mater Sci Eng A 319 (2001).

  27. Shrestha T, Basirat M, Charit I, Potirniche GP, Rink KK, Mater Sci Eng A [Internet]. 565 2013. Available from: http://dx.doi.org/10.1016/j.msea.2012.12.031.

  28. Shrestha T, Basirat M, Charit I, Potirniche GP, Rink KK, Sahaym U, J Nucl Mater [Internet]. 423 (2012). Available from: http://dx.doi.org/10.1016/j.jnucmat.2012.01.005.

  29. Maddi L, Barbadikar D, Sahare M, Ballal AR, Peshwe DR, Paretkar RK, Laha K, Mathew MD, Trans Indian Inst Met 68 (2015).

  30. Report F, Hobbs C, Echivarre M, Jania C, Whitson S, Creep Performance and Microstructural Characterization of the Type IV Region in Grade 91 Steel Weldments. Technical report (2015).

  31. Sawada K, Bauer M, Kauffmann F, Mayr P, Klenk A, Mater Sci Eng A 527 (2010).

    Article  Google Scholar 

  32. Abd El-Azim ME, El-Desoky OE, Ruoff H, Kauffmann F, Roos E, Mater Sci Technol [Internet]. 29 (2013). Available from: http://www.maneyonline.com/doi/abs/10.1179/1743284713Y.0000000233.

  33. Albert SK, Matsui M, Watanabe T, Hongo H, Kubo K, Tabuchi M, Int J Press Vessel Pip 80 (2003).

    Article  Google Scholar 

  34. Das CR, Albert SK, Swaminathan J, Raju S, Bhaduri AK, Murty BS, Metall Mater Trans A Phys Metall Mater Sci 43 (2012).

    Article  Google Scholar 

  35. Pandey C, Mahapatra MM, Kumar P, Saini N, Mater Sci Eng A [Internet]. 685 (2017). Available from: http://linkinghub.elsevier.com/retrieve/pii/S0921509316315830.

  36. Manugula VL, Rajulapati KV, Reddy GM, Rao KBS, Mater Sci Eng A [Internet]. 698 (2017). Available from: www.elsevier.com/locate/msea.

  37. Panait CG, Zieli´nska-Lipiec A, Koziel T, Czyrska-filemonowicz A, Gourgues-Lorenzon AF, Bendick W, Mater Sci Eng A 527 (2010).

  38. Abe F, J Press Vessel Tech 138 (2017).

    Google Scholar 

  39. Pandey C, Giri A, Mahapatra MM, Mater Sci Eng A [Internet]. 664 (2016). Available from: http://dx.doi.org/10.1016/j.msea.2016.03.132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, C., Mahapatra, M.M., Kumar, P. et al. Nano-size Particle Evolution During Heat Treatment of P91 Steel and Their Effect on Micro Hardness. Trans Indian Inst Met (2017). https://doi.org/10.1007/s12666-017-1215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-017-1215-6

Keywords

Navigation