Skip to main content
Log in

Mechanical Properties of Polypropylene Nanocomposites: Dispersion Studies and Modelling

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work mainly focusses on the mechanical and dispersion behavior of Polypropylene (PP) reinforced with Spheri glass 3000 (SG). In this work PP thermoplastic polymer and SG filler (1.25, 2.5, 5 and 7.5 wt%) was mixed using twin screw extruder to produce PP/SG nanocomposites. The developed PP/SG nanocomposites were investigated with X-ray Diffraction, showing an exfoliated structure of nanocomposite category. The PP/SG nanocomposites were characterized for mechanical and metallurgical characterization. To validate the tensile properties of PP/SG nanocomposites, different mathematical models were used which provided good results when compared to the experimental values. The result showed that the fine dispersion of SG in PP matrix enhanced mechanical properties and the same was confirmed by Field Emission Scanning Electron Microscope (FE SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniel D J, and Panneerselvam K, J Compos Mater (2015) 0021998315616176.

  2. Pavlidou S and Papaspyrides C D, Prog Polym Sci 33 (2008) 1119.

    Article  Google Scholar 

  3. Sinha Ray S and Okamoto M, Progr Polym Sci 28 (2003) 1539.

    Article  Google Scholar 

  4. Daniel D J and Panneerselvam K, T Indian I Metals 0 (2016), 1.

  5. Jafrey D D and Panneerselvam K, Polym Eng Sci 57 (2017), 495. doi:10.1002/pen.24443.

  6. Lim S H, Dasari A, Wang G T, Yu Z Z, Mai Y W, Yuan Q, and Yong M S, Compos Part B-Eng 41 (2010) 67.

    Article  Google Scholar 

  7. Chinellato A C, Vidotti S E, Hu G H, and Pessan L A, Compos Sci Technol 70 (2010) 458.

    Article  Google Scholar 

  8. Lertwimolnun W and Vergnes B, Polymer 46 (2005) 3462.

    Article  Google Scholar 

  9. Zhang S, Hull T R, Horrocks A R., Smart G, Kandola B K, Ebdon J and Hunt B, Polym Degrad Stabil 92 (2007) 727.

    Article  Google Scholar 

  10. Yoo Y, Spencer M W and Paul D R, Polymer 52 (2011) 180.

    Article  Google Scholar 

  11. Yan W, Lin R J T, and Bhattacharyya D, Compos Sci Technol 66 (2006) 2080.

    Article  Google Scholar 

  12. Daniel D J and Panneerselvam K, Procedia Technology 25 (2016)1114.

    Article  Google Scholar 

  13. Daniel D J and Panneerselvam K, Materials Today Proceedings 4 (2017) 4032.

    Article  Google Scholar 

  14. Kim S J, Shin B S, Hong J L, Cho W J, and Ha C S, Polymer 42 (2001) 4073.

    Article  Google Scholar 

  15. Chin I J, Thurn-Albrecht T, Kim H C, Russell T P, and Wang J, Polymer, 42 (2001) 5947.

    Article  Google Scholar 

  16. Alexandre M and Dubois P, Materials Science and Engineering: R: Reports 28 (2000) 1.

    Article  Google Scholar 

  17. Ahmed S and Jones F R, Journal of Materials Science 25 (1990) 4933.

    Article  Google Scholar 

  18. Nielsen LE, J Appl Phys 41 (1970) 4626.

    Article  Google Scholar 

  19. Gao Z and Tsou AH, J Polym Sci Part B: Polym Phys 37 (1999) 155.

    Article  Google Scholar 

  20. Nicolais L and Narkis M, Polym Eng Sci 11 (1971) 194.

    Article  Google Scholar 

  21. Guth E, J Appl Phys 16 (1945) 20.

    Article  Google Scholar 

  22. Verbeek CJR, Mater Lett 57 (2003) 1919.

    Article  Google Scholar 

  23. Verbeek CJR and Focke WW, Compos Part A: Appl Sci Manuf 33 (2002) 1697.

    Article  Google Scholar 

  24. Saminathan K, Selvakumar P and Bhatnagar N, Polym Test 27 (2008) 453.

    Article  Google Scholar 

  25. Hussain F, Hojjati M, Okamoto M and Gorga R E, J Compos Mater 40 (2006) 1511.

    Article  Google Scholar 

  26. Mooney M, J Coll Sci 6 (1951) 162.

    Article  Google Scholar 

  27. Cauvin L, Kondo D, Brieu M and Bhatnagar N, (2010) Polym Test 29 (2010) 245.

    Article  Google Scholar 

  28. Dayma N and Satapathy BK, Mater Des 21 (2010) 4693.

    Article  Google Scholar 

  29. Hsueh CH, Becher PF Effective viscosity of suspensions of spheres, J Am Ceram Soc 88 (2005) 1046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Panneerselvam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, D.J., Panneerselvam, K. Mechanical Properties of Polypropylene Nanocomposites: Dispersion Studies and Modelling. Trans Indian Inst Met 71, 225–230 (2018). https://doi.org/10.1007/s12666-017-1158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1158-y

Keywords

Navigation