Skip to main content
Log in

Coarse Particles in Homogeneous Non-Newtonian Slurries: Combined Effects of Shear-Thinning Viscosity and Fluid Yield Stress on Drag and Heat Transfer from Hemispherical Particles

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, the momentum and energy equations have been solved numerically for predicting the hydrodynamic drag and heat transfer coefficient for a hemispherical particle submerged in a flow stream of yield-pseudoplastic fluids in order to elucidate the combined effects of shear-thinning viscosity and fluid yield stress. In this case, the momentum transfer aspects are influenced by the values of the Reynolds number (0.1 ≤ Re ≤ 100), Bingham number(0 ≤ Bn ≤ 100), shear-thinning index (0.2 ≤ n ≤ 1) and the orientation of the hemisphere. Similarly, the corresponding heat transfer results show additional dependence on the Prandtl number (0.7 ≤ Pr ≤ 100) and the type of thermal (isothermal or isoflux) boundary condition specified on the surface of the heated hemisphere. The numerical results are discussed in terms of the size and shape of the fluid-like yielded regions, wake lengths, hydrodynamic drag and heat transfer coefficients as functions of the preceding dimensionless parameters. Finally, the present values of the drag coefficient and Nusselt number have been fitted using simple expressions thereby enabling the interpolation of the present results for the intermediate values of the parameters and/or their prediction in a new application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Surface area of hemisphere (m2)

Bn :

Bingham number, Eq. (9), dimensionless

C D :

Total drag coefficient, dimensionless

C DF :

Viscous (or friction) drag coefficient, dimensionless

C DP :

Pressure (or form) drag coefficient, dimensionless

C p :

Specific heat of fluid (J kg−1 K−1)

d :

Diameter of hemisphere (m)

\(D_{\infty }\) :

Diameter of computational domain (m)

j H :

Colburn-j factor, dimensionless

k :

Thermal conductivity of fluid (W m−1 K−1)

K :

Fluid consistency index (Pa sn)

L r :

Recirculation length measured from the center of the hemisphere, dimensionless

m :

Growth rate parameter used in Papanastasiou model, Eq. (5), dimensionless

n :

Shear-thinning (or fluid behaviour) index, dimensionless

Pr :

Prandtl number, Eq. (10), dimensionless

\(Pr^{*}\) :

Modified Prandtl number (=Pr(1 + Bn)), dimensionless

q 0 :

Constant wall heat flux prescribed on the hemisphere (W m−2)

Re :

Reynolds number, Eq. (8) dimensionless

\(Re^{*}\) :

Modified Reynolds number (=Re/(1 + Bn)), dimensionless

T :

Fluid temperature (K)

T 0 :

Fluid temperature in the free stream (K)

T w :

Constant wall temperature prescribed on the hemisphere (K)

V :

Velocity vector, dimensionless

V 0 :

Free stream velocity (m s−1)

x,y :

Cartesian coordinates (m)

\(\dot{\gamma }\) :

Rate of deformation tensor, dimensionless

\(\dot{\gamma }_{e}^{{\prime }}\) :

Parameter used in Bercovier and Engelman model, Eq. (7), dimensionless

\(\mu_{{\text{HB}}}\) :

Plastic viscosity of Herschel–Bulkley fluid model (=K(V 0/d)n−1) (Pa s)

\(\mu_{y}\) :

Yielding viscosity used in bi-viscosity model, Eq. (6) (Pa s)

\(\rho\) :

Density of fluid (kg m−3)

\(\varvec{\tau}\) :

Deviatoric stress tensor, dimensionless

\(\tau_{0}\) :

Fluid yield stress (Pa)

\(\phi\) :

Fluid temperature (=(T − T 0)/(T w  − T 0) for constant wall temperature); (=T − T 0/(q 0 d/k) for constant wall heat flux), dimensionless

References

  1. Schramm L L, Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications, second ed., Wiley-VCH, New York (2014).

    Google Scholar 

  2. Coussot P, Mudflow Rheology and Dynamics, CRC Press Taylor & Francis, New York (1997).

    Google Scholar 

  3. Chhabra R P, and Richardson J F, Non-Newtonian Flow and Applied Rheology: Engineering Applications, second ed., Butterworth-Heinemann, Oxford, UK (2008).

    Google Scholar 

  4. Kotze R, Haldenwang R, and Slatter P, Appl Rheol 18 (2008) 62114.

    Google Scholar 

  5. Boger D V, Annu Rev Chem Biochem. Eng 4 (2013) 239.

    Article  Google Scholar 

  6. Narasimha M, Brennan M S, and Holtham P N, Coal Prep 26 (2006) 55.

    Article  Google Scholar 

  7. Shamlou P A, Processing of Liquid-Solid Suspensions, Elsevier, London (1993).

    Google Scholar 

  8. Richardson J F, and Zaki W N, Trans Inst Chem Eng 32 (1954) 35.

    Google Scholar 

  9. Laba D, Rheological Properties of Cosmetics and Toiletries, Marcel-Dekker, New York, (1993).

    Google Scholar 

  10. Chhabra R P, and Richardson J F, Chem Eng Res Des 63 (1985) 390.

    Google Scholar 

  11. Chhabra R P, Bubbles, Drops and Particles in Non-Newtonian Fluids, second ed., CRC Press, Boca Raton, FL (2006).

    Book  Google Scholar 

  12. Beaulne M, and Mitsoulis E, J Non-Newt Fluid Mech 72 (1997) 55.

    Article  Google Scholar 

  13. Atapattu D D, Chhabra R P, and Uhlherr P H T, J Non-Newt Fluid Mech 38 (1990) 31.

    Article  Google Scholar 

  14. Atapattu D D, Chhabra R P, and Uhlherr P H T, J Non-Newt Fluid Mech 59 (1995) 245.

    Article  Google Scholar 

  15. Nirmalkar N, Chhabra R P, and Poole R J, Ind Eng Chem Res 52 (2013) 13490.

    Article  Google Scholar 

  16. Gupta A K, and Chhabra R P, Int J Heat Mass Transf 93 (2016) 803.

    Article  Google Scholar 

  17. Haider A, and Levenspiel O, Powder Technol 58 (1989) 63.

    Article  Google Scholar 

  18. Ganser G H, Powder Technol 77 (1993) 143.

    Article  Google Scholar 

  19. Chhabra R P, Agarwal L, and Sinha N K, Powder Technol 101 (1999) 288.

    Article  Google Scholar 

  20. Clift R, Grace J R, and Weber M E, Bubbles, Drops and Particles, Academic Press, New York (1978).

    Google Scholar 

  21. Michaelides E E, Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer, World Scientific, Singapore (2006).

    Book  Google Scholar 

  22. Rajitha P, Chhabra R P, Sabiri N E, and Comiti J, Int J Miner Process 78 (2006) 110.

    Article  Google Scholar 

  23. Wang J, Qi H, and You C, Particuology 7 (2009) 264.

    Article  Google Scholar 

  24. Patel O P, Patel S A, Raja A H, and Chhabra R P, J Energy Heat Mass Transfer 37 (2015) 27.

    Google Scholar 

  25. Nalluri S V, Patel S A, and Chhabra R P, Int J Heat Mass Transfer 84 (2015) 304.

    Article  Google Scholar 

  26. Kim D, and Choi H, Phys Fluids 15 (2003) 2457.

    Article  Google Scholar 

  27. Bird R B, Armstrong R C, and Hassager O, Dynamics of Polymeric Liquids, Fluid Mechanics, second ed., vol. 1, Wiley, New York (1987).

  28. Macosko C W, Rheology: Principles, Measurements and Applications, Wiley-VCH, New York (1994).

    Google Scholar 

  29. Bird R B, Dai G C, and Yarruso B J, Rev Chem Eng 1 (1983) 1.

    Article  Google Scholar 

  30. Huilgol R R, and Kefayati G H R, J Non-Newt Fluid Mech 220 (2015) 22.

    Article  Google Scholar 

  31. Huilgol R R, Fluid Mechanics of Viscoplasticity, Springer, Berlin-Heidelberg (2015).

    Book  Google Scholar 

  32. Glowinski R, and Wachs A, in Handbook of Numerical Analysis, (eds) Glowinski R, and Xu, J, Elsevier, North-Holland (2011), p 483.

  33. E. Mitsoulis, in Rheology Reviews, (eds) Binding D M, Hudson N E, and Keunings R, The British Society of Rheology, London, UK (2007), p 135.

  34. Baranwal A K, and Chhabra R P, Heat Transfer Eng (in press). doi:http://dx.doi.org/10.1080/01457632.2016.1200373.

  35. Papanastasiou T C, J Rheol 31 (1987) 385.

    Article  Google Scholar 

  36. O’Donovan E J, and Tanner R I, J Non-Newt Fluid Mech 15 (1984) 75.

    Article  Google Scholar 

  37. Bercovier M, and Engelman M, J Comput Phys 36 (1980) 313.

    Article  Google Scholar 

  38. Nirmalkar N, Chhabra R P, and Poole R J, Ind Eng Chem Res 52 (2013) 6848.

    Article  Google Scholar 

  39. Mukherjee S, Gupta A K, and Chhabra R P, Int J Heat Mass Transf 104 (2017) 112.

    Article  Google Scholar 

  40. Barnes H A, J Non-Newt Fluid Mech 81 (1999) 133.

    Article  Google Scholar 

  41. Sasmal C, Shyam R, and Chhabra R P, Int J Heat Mass Transf 63 (2013) 51.

    Article  Google Scholar 

Download references

Acknowledgements

RPC gratefully acknowledges the financial support of the Department of Science and Technology (Government of India) via the award of a J C Bose fellowship to him for the period 2015–2020. Funding was provided by Department of Science and Technology, Ministry of Science and Technology (SB/S2/JCB-06/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Chhabra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, O., Patel, S.A., Gupta, A.K. et al. Coarse Particles in Homogeneous Non-Newtonian Slurries: Combined Effects of Shear-Thinning Viscosity and Fluid Yield Stress on Drag and Heat Transfer from Hemispherical Particles. Trans Indian Inst Met 70, 341–358 (2017). https://doi.org/10.1007/s12666-016-0983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0983-8

Keywords

Navigation