Skip to main content
Log in

Controlled Evolution of Coincidence Site Lattice Related Grain Boundaries

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Modification in grain boundary character distribution has been known to improve the functional and mechanical properties of low stacking fault energy, face centered cubic materials. In this work, thermomechanical processing has been employed on nickel alloy using iterative and single-step, non-iterative routes to gain an insight into the role of processing path on the generation of low-Σ coincidence site lattice (CSL) boundaries. A low amount of strain (~4 %) has been used in iterative processing in order to obtain CSL boundaries with less deviation. Evolution of Σ1 and Σ3 boundaries showed different trends during iterative and non-iterative processing. Also, iterative processing resulted in low-Σ CSL fraction (Σ ≤ 29) as high as 0.9 consisting of significant fraction from both Σ1 and Σ3 boundaries. Non-iterative processing yielded low-Σ CSL fraction of 0.73 but with significant contribution only from Σ3 boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watanabe T, Res Mech 11 (1984) 47.

    Google Scholar 

  2. Watanabe T, and Tsurekawa S, Acta Mater 47 (1999) 4171.

    Article  Google Scholar 

  3. Aust K, Can Metall Q 33 (1994) 265.

    Article  Google Scholar 

  4. Brokman A, and Balluffi R W, Acta Metall 29 (1981) 1703.

    Article  Google Scholar 

  5. Kronberg M, and Wilson F, AIME Trans 185 (1949) 501.

    Google Scholar 

  6. Randle V, The Role of the Coincidence Site Lattice in Grain Boundary Engineering, Institute of Materials, London (1996).

    Google Scholar 

  7. Randle V, and Brown A, Philos Mag A 59 (1989) 1075.

    Article  Google Scholar 

  8. Schwartz A J, Kumar M, and King W E, MRS Proceedings, vol 586, Cambridge University Press, Cambridge (1999), p 3.

    Google Scholar 

  9. Randle V, and Owen G, Acta Mater 54 (2006) 1777.

    Article  Google Scholar 

  10. Thomson C, and Randle V, Acta Mater 45 (1997) 4909.

    Article  Google Scholar 

  11. Palumbo G, Lehockey E, and Lin P, JOM 50 (1998) 40.

    Article  Google Scholar 

  12. Gao Y, Ritchie R, Kumar M, and Nalla R, Metall Mater Trans A 36 (2005) 3325.

    Article  Google Scholar 

  13. Field D, and Adams B, Acta Metall Mater 40 (1992) 1145.

    Article  Google Scholar 

  14. Lehockey E, Palumbo G, Lin P, and Brennenstuhl A, Scripta Mater 36 (1997) 1211.

    Article  Google Scholar 

  15. Miyamoto H, Ikeuchi K, and Mimaki T, Scripta Mater 50 (2004) 1417.

    Article  Google Scholar 

  16. Aust K, Erb U, and Palumbo G, Mater Sci Eng A 176 (1994) 329.

    Article  Google Scholar 

  17. Palumbo G, King P, Aust K, Erb U, and Lichtenberger P, Scr Metall Mater 25 (1991) 1775.

    Article  Google Scholar 

  18. Lehockey E, Palumbo G, and Lin P, Scr Mater 39 (1998) 353.

    Article  Google Scholar 

  19. Watanabe T, Fujii H, Oikawa H, and Arai K, Acta Metall 37 (1989) 941.

    Article  Google Scholar 

  20. Inconel E L, Alloys 4 (1999) 600.

    Google Scholar 

  21. Crum J R, Major Applications and Corrosion Performance of Nickel Alloys, vol 13, Corrosion. ASM Handbook (1992).

  22. Friend W Z, Corrosion of Nickel and Nickel-Base Alloys, Wiley, New York (1980).

    Google Scholar 

  23. Cheng C F, J Nucl Mater 57 (1975) 11.

    Article  Google Scholar 

  24. Lin H, and Pope D P, Acta Metall Mater 41 (1993) 553.

    Article  Google Scholar 

  25. Gertsman V Y, and Bruemmer S M, Acta Mater 49 (2001) 1589.

    Article  Google Scholar 

  26. Palumbo G, and Aust K, Acta Metall Mater 38 (1990) 2343.

    Article  Google Scholar 

  27. Hasson G, Boos J Y, Herbeuval I, Biscondi M, and Goux C, Surf Sci 31 (1972) 115.

    Article  Google Scholar 

  28. Winning M, Rollett A, Gottstein G, Srolovitz D, Lim A, and Shvindlerman L S, Philos Mag 90 (2010) 3107.

    Article  Google Scholar 

  29. Lin P, Palumbo G, Erb U, and Aust K, Scr Metall Mater 33 (1995) 1387.

    Article  Google Scholar 

  30. Kumar M, King W E, and Schwartz A J, Acta Mater 48 (2000) 2081.

    Article  Google Scholar 

  31. Shimada M, Kokawa H, Wang Z, Sato Y, and Karibe I, Acta Mater 50 (2002) 2331.

    Article  Google Scholar 

  32. Qian M, and Lippold J, Acta Mater 51 (2003) 3351.

    Article  Google Scholar 

  33. Kumar M, Schwartz A J, and King W E, in Proceedings of the International Conference on Texture of Materials (1999), p 9.

  34. Lim L, and Raj R, Acta Metall 32 (1984) 1177.

    Article  Google Scholar 

  35. Brandon D, Acta Metall 14 (1966) 1479.

    Article  Google Scholar 

  36. Sutton A P, and Balluffi R W, Interfaces in Crystalline Materials, Oxford Science Publications Clarendon Press, Oxford (1995).

    Google Scholar 

Download references

Acknowledgments

This work was supported by Indian Institute of Technology Kanpur under initiation Grant No. INI-IITK-MET-20110158. The authors are also grateful to the reviewers for their helpful comments in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Shekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaid, A., Mittal, K., Sahu, S. et al. Controlled Evolution of Coincidence Site Lattice Related Grain Boundaries. Trans Indian Inst Met 69, 1745–1753 (2016). https://doi.org/10.1007/s12666-016-0834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0834-7

Keywords

Navigation