Skip to main content
Log in

Creep Properties Assessment of P92 Steel by Small Punch Creep Tests

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Small punch creep (SPC) tests have the potential as an alternative to conventional uniaxial creep tests when limited amount of material is available. This paper investigates the applicability of SPC to evaluate the creep deformation behavior of P92 steel. SPC results have been compared with uniaxial creep test results in order to establish the correlation between the two tests. Small punch tests on P92 steel have been performed at 600 °C in the load range of 1000–400 N. The load dependence of minimum deflection rate was found to obey Norton’s power law but with a two slope behavior exhibiting distinct values of load exponents in the low and high load regimes. Transition in fracture mode of SPC specimens from ductile transgranular at high loads to brittle intergranular fracture at low loads was in accordance with the large variation in load exponent values. Monkman–Grant equation interrelating minimum deflection rate with rupture time has been found to be valid for SPC data. Correlations between SPC load and minimum deflection rate with uniaxial creep stress and minimum creep rate respectively, established based on empirical relations suggest the relevance of SPC for evaluating creep properties in relatively short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lucas G E, J Nucl Mater 117 (1983) 327.

    Article  Google Scholar 

  2. Lucas G E, Okada A, and Kiritani M, J Nucl Mater 141 (1986) 532.

    Article  Google Scholar 

  3. Manahan M P, Argon A S, and Harling O K, J Nucl Mater 103 (1981) 1545.

    Article  Google Scholar 

  4. Huang F H, Hamilton M L, and Wire G L, Nucl Technol 57 (1982) 234.

    Google Scholar 

  5. Baik J M, Kameda J, and Buck O, Scr Metall Mater 17 (1983) 1443.

    Article  Google Scholar 

  6. Kohse G, Ames M, and Harling O K, J Nucl Mater 141–143 (1986) 513.

    Article  Google Scholar 

  7. Mao X, Shoji T, and Takahashi H, J Test Eval 15 (1987) 30.

    Article  Google Scholar 

  8. Mao X, and Takahashi H, J Nucl Mater 150 (1987) 42.

    Article  Google Scholar 

  9. Parker J D, and James J D, ASME PVP 279 (1994) 167.

    Google Scholar 

  10. Ule B, Sustar T, Dobes F, Milicka K, Bicego V, Tettamanti S, Maile K, Schwarzkopf C, Whelan M P, Kozlowski R H, and Klaput J, Nucl Eng Des 192 (1999) 1.

    Article  Google Scholar 

  11. Komazai S, Hashida T, Shoji T, and Suzuki K, J Test Eval 28 (2000), 249.

    Article  Google Scholar 

  12. Dobes F, and Milicka K, J Test Eval 29 (2001) 31.

    Article  Google Scholar 

  13. European Creep Collaborative Committee, ECCC Recommendations—Volume 3, Chapter 3, S. Brett (2005).

  14. Small Punch Test Method of Metallic Materials, CEN Workshop Agreement, CWA. 15627: 2006 E, CEN, Brussels, Belgium (2006).

  15. Blagoeva D T, and Hurst R C, Mater Sci Eng A 510–511 (2009) 219.

    Article  Google Scholar 

  16. Dobes F, and Milicka K, Int J Press Vessel Pip 83 (2006) 625.

    Article  Google Scholar 

  17. Dobes F, and Milicka K, Mater Sci Eng A 510–511 (2009) 440.

    Article  Google Scholar 

  18. Dobes F, and Milicka K, Mater Charact 59 (2008) 961.

    Article  Google Scholar 

  19. Zhai P C, Hashida T, Komazaki S I, and Zhang Q J, J Test Eval 33 (2005) 298.

    Google Scholar 

  20. Ling X, Zheng Y, You Y, and Chen Y, Int J Press Vessel Pip 84 (2007) 304.

    Article  Google Scholar 

  21. Zhou Z, Zheng Y, Ling X, Hu R, and Zhou J, Mater Sci Eng A 527 (2010) 2784.

    Article  Google Scholar 

  22. Ennis P J, and Filemonowicz A C, Sadhana 28 (2003) 709.

    Article  Google Scholar 

  23. Ennis P J, Zielinska-Lipiec A, Wachter O, and Filemonowicz A C, Acta Mater 45 (1997) 4901.

    Article  Google Scholar 

  24. Klueh R L, Int Mater Rev 50 (2005) 287.

    Article  Google Scholar 

  25. Wang S S, Peng D L, Chang L, and Hui X D, Mater Des 50 (2013) 174.

    Article  Google Scholar 

  26. Lee J S, Armaki H G, Maruyama K, Muraki T, and Asahi H, Mater Sci Eng A 428 (2006) 270.

    Article  Google Scholar 

  27. Isaac E I, Choudhary B K, Palaparti D R, and Mathew M D, Proc Eng 55 (2013) 64.

    Article  Google Scholar 

  28. Sklenicka S V, Kucharova K, Svoboda M, Kloc L, Bursk J, and Kroupa A, Mater Charact 51 (2003) 35.

    Article  Google Scholar 

  29. Choudhary B K, and Samuel E I, J Nucl Mater 412 (2011) 82.

    Article  Google Scholar 

  30. Muraki T, Hasegawa Y, and Ohgami M, Key Eng Mater 171–174 (2000) 499.

    Article  Google Scholar 

  31. Ashby M F, Gandihi C, and Taplin D M R, Acta Mater 27 (1979) 699.

    Article  Google Scholar 

  32. Choudhary B K, Phaniraj C, Bhanu Sankara Rao, and Manna S L, ISIJ Int 41 (2001) S73.

    Article  Google Scholar 

  33. Chakrabarty J, Int J Mech Sci 12 (1970) 315.

    Article  Google Scholar 

  34. Hurst R C, Strratford G C, and V. Bicego, in Proceedings of ECCC Creep Conference, London (2005) 349.

  35. Small Punch Test Method for Metallic Materials Part 1: a code of practice for small punch testing at elevated temperatures, Report No. CEN/WS 21 (2005).

  36. Dobes F, and Milicka K, Mater Sci Eng A 336 (2002) 245.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge UGC-DAE-CSR for the financial support of this project. The authors also wish to express their gratitude to UGC-DAE-CSR center, Kalpakkam Node for providing the experimental facilities and Mr. N. S. Thampi for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, G.S., Prasad, M.L., Peshwe, D.R. et al. Creep Properties Assessment of P92 Steel by Small Punch Creep Tests. Trans Indian Inst Met 69, 907–915 (2016). https://doi.org/10.1007/s12666-015-0579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0579-8

Keywords

Navigation