Skip to main content
Log in

Modeling on Transition of Heavy Metals from Ni–Cd Zinc Plant Residue Using Artificial Neural Network

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The assessment of heavy metal transition from Ni–Cd zinc plant residue (filtercake), as concentrations of zinc, nickel, cadmium and lead, requires quantification and a mathematical model that predicts their relative concentrations. Variability of filtercake characteristics may change the availability of heavy metals to the leachate or environment. In this study, a novel artificial neural network (ANN) model was constructed to predict Zn, Ni, Cd and Pb concentration leached from Ni–Cd filtercake in the leaching column. A three-layer backpropagation neural network was optimized and developed based on the Bayesian training algorithm. The inputs of this network are pH, flow rate of acidic influent, particle size and time. The geometry of the network giving the minimized mean square error (MSE) and sum of squared error (SSE) was a three-layer network having 18 neurons in the hidden layer (4:18:4) with a tangent sigmoid transfer function (tansig) at the hidden layer and linear transfer function (purelin) at the output layer. The fitting, regression, error and histogram plots for each response illustrate that there is a good agreement between the experimental data and the predicted values. Finally, a generalization of the developed model was carried out as 3D plots to evaluate the interactions of the input parameters on the transition of heavy metals to the leachate. With respect to these results, the effect of particle size on concentrations of zinc, nickel and lead are less (<3 mg/L) than that of cadmium (<3 mg/L). Furthermore, it was found that, at low flow rate, the concentrations of extracted metals are high due to enhancement of exposure residence time (between particles and leach solution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Reference

  1. Safarzadeh M S, Moradkhani D and Ashtari P, Hydrometallurgy 97 (2009) 67.

    Article  Google Scholar 

  2. Safarzadeh M S, Moradkhani D, Ilkhchi M O and Golshan N H, Sep Purif Technol 58 (2008) 367.

    Article  Google Scholar 

  3. Corkhill C L and Vaughan D J, Appl Geochem 24 (2009) 2342.

    Article  Google Scholar 

  4. ACAT and REDOIL, Mining and Toxic Metals: A case study of the proposed Donlin Creek mine.

  5. Johnson D B and Hallberg K B, Sci Total Environ 338 (2005) 3.

    Article  Google Scholar 

  6. Buszewski, B and Kowalkowski T, Environ Eng sci 23 (2006) 589.

    Article  Google Scholar 

  7. Anagu I, Ingwersen J, Utermann J and Streck T, Geoderma 152 (2009) 104.

    Article  Google Scholar 

  8. Buszewski B and Kowalowski A T, Environ Eng Sci 23 (2006) 589.

    Article  Google Scholar 

  9. Hinz C and Selim H M, Soil Sci Soc Am J 58 (1994) 1316.

    Article  Google Scholar 

  10. Kent D B, Abrams R H, Davis J A, Coston J A and LeBlanc D R, Water Resour Res 36 (2000) 3411.

    Article  Google Scholar 

  11. Kolahchi Z and Jalali M, Agric Water Manag 85 (2006) 85.

    Article  Google Scholar 

  12. Sayyad G, Afyuni M, Mousavi S-F, Abbaspour K C, Richards B K and Schulin R, Geoderma 154 (2010) 311.

    Article  Google Scholar 

  13. Bianchi Janetti E, Dror I, Riva M, Guadagnini A, Sanchez-Vila X and Berkowitz B, Transp Porous Med 97 (2013) 295.

  14. Altin O, Ozbelge O H and Dogu T, J Chem Technol Biotechnol 74 (1999) 1139.

    Article  Google Scholar 

  15. van der Zee S E A T M and Van Riemsdijk W H, Water Resour Res 23 (1987) 2059.

    Article  Google Scholar 

  16. Springob, G and J Böttcher, Zeitschrift für Pflanzenernährung und Bodenkunde. 161 (1998) 681.

  17. Wilkins B J, Brummel N and Loch J P G, Water, Air, Soil Pollut 101 (1998) 349.

    Article  Google Scholar 

  18. Kookana R S and Naidu R, Geoderma 84 (1998) 235.

    Article  Google Scholar 

  19. Streck T and Richter J, J Environ Qual 26 (1997) 56.

    Article  Google Scholar 

  20. Hattab N, Hambli R, Motelica-Heino M, Bourrat X and Mench M, J Geochem Explor 128 (2013) 25.

    Article  Google Scholar 

  21. Bayar S, Demir I and Engin G O, Ecotoxicol Environ Saf 72 (2009) 843.

    Article  Google Scholar 

  22. Kaluli J W, Madramootoo C A and Djebbar Y, Water Sci Technol 38 (1998) 127.

    Article  Google Scholar 

  23. Poon C S and Lio K W, Waste Manag 17 (1997) 15.

    Article  Google Scholar 

  24. Deopker R and O’Connor W, Mine Water Environ 10 (1991) 57.

    Google Scholar 

  25. Jackson D R, Garrett B C and Bishop T A, Environ Sci Technol 18 (1984) 668.

    Article  Google Scholar 

  26. Li X, You F, Huang L, Strounina E and Edraki M, Environ Sci Eur 25 (2013) 1.

    Article  Google Scholar 

  27. Tu J V, J Clin Epidemiol 49 (1996) 1225.

    Article  Google Scholar 

  28. Kamran Haghighi H, Moradkhani D and Salarirad M M, Trans Indian Inst Met 67 (2014) 331.

  29. Moradkhani D, Sedaghat B and Khodadadi A, Environmental assessment of the potential for heavy metals leaching, in EMC 2011, Europe (2011).

  30. B Y, Artificial Neural Networks, Hall of India Private Limited, New Delhi (2006).

  31. Elmolla E S, Chaudhuri M and Eltoukhy M M, J Hazard Mater 179 (2010) 127.

    Article  Google Scholar 

  32. Karimi F, Rafiee S, Taheri-Garavand A and Karimi M, Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. J Taiwan Inst Chem Eng. Vol. 43. 2012: AAAA. 29.

  33. Anderson J, An introduction to neural networks. 1995, New Delhi: Prentice-Hall.

    Google Scholar 

  34. Khan M S and Coulibaly P, Water Resour Res 42 (2006) W07409.

    Google Scholar 

  35. Schalkoff R J, Artificial Neural Networks, McGraw-Hill, New York (1997).

    Google Scholar 

  36. Twomey J M and Smith A E, Math Comput Model 21 (1995) 243.

    Article  Google Scholar 

  37. Messikh N, Samar M H and Messikh L, Desalination 208 (2007) 42.

    Article  Google Scholar 

  38. Miller J D, Lin C L and Roldan C. Particle size distribution for copper heap leaching operations as established from 3D mineral exposure analysis by X-ray microCT. in COPPER 2003-COBRE 2003 Santiago, Chile, (2003)

  39. Sheikhzadeh G A, Mehrabian M A, Mansouri S H and Sarrafi A, Int J Heat Mass Trans 48 (2005) 279.

    Article  Google Scholar 

  40. Agatzini-Leonardou S and Zafiratos I G, Hydrometallurgy 74 (2004) 267.

    Article  Google Scholar 

  41. Quaicoe I, Nosrati A, Skinner W and Addai-Mensah J, Miner Eng 65 (2014) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kamran Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran Haghighi, H., Rafie, M., Moradkhani, D. et al. Modeling on Transition of Heavy Metals from Ni–Cd Zinc Plant Residue Using Artificial Neural Network. Trans Indian Inst Met 68, 741–756 (2015). https://doi.org/10.1007/s12666-014-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0507-3

Keywords

Navigation