Skip to main content
Log in

Influence of Temperature on Reducing Gas Sensing Performance of Nanocrystalline Zinc Ferrite

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Pure phase, zinc ferrite (ZnFe2O4) nanoparticles were synthesized at lower temperature (80 °C) by auto combustion synthesis method. The resulting ‘as synthesized’ powder was heat treated (HT) at 560 °C for 2 h in air atmosphere. As-synthesized particles had sizes ~10 nm with spherical shape. Further, these spherically shaped nanoparticles tended to change their morphology to hexagonal plate shape with increasing HT temperature. The band gap of the ‘as synthesized’ and HT zinc ferite, as determined by using UV–Vis spectroscopy were found to be 1.92 and 1.86 eV respectively. Gas responses of the ZnFe2O4 nanoparticles were measured by exposing them to ethanol gas vapors. It was found that the zinc ferrite nanoparticles exhibited various sensing responses to ethanol gas at different operating temperature. The best sensitivity was observed at low temperature for ‘as synthesized’ ferrite nanoparticles than HT zinc ferrite nanoparticles. Sensing material that had smaller particle size and larger specific surface area was observed to have larger gas sensitivity and vice-versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gadkari A B, Shinde T J, and Vasambekar P N, IEEE Sens J, 11 (2011) 849.

    Article  Google Scholar 

  2. Jiang Y, Song W, Xie C, Wang A, Zeng D, and Hu M, Mater Lett 60 (2006) 1374.

    Article  Google Scholar 

  3. Chen N S, Yang X J, Liu E S, and Huang, J L, Sens Actuators B 66 (2000) 178.

    Article  Google Scholar 

  4. Kapse V D, Ghosh S A, Raghuwanshi F C, and Kapse S D, Chem Phys 113 (2009) 638.

    Google Scholar 

  5. Mukherjee K, and Majumder S B, Talanta 81 (2010) 1826.

    Article  Google Scholar 

  6. Chu X F, Liu X Q, and Meng G Y, Mater Sci Eng B 64 (1999) 60.

    Article  Google Scholar 

  7. Martinelli G, and Carotta M C, Sens Actuators B 7 (1992) 717.

    Article  Google Scholar 

  8. Arshak K, and Gaidan L, Thin Solid Films 495 (2006) 292.

    Article  Google Scholar 

  9. Xiangfeng E, and Chemou Z, Sens Actuators B 96 (2003) 504.

    Article  Google Scholar 

  10. Sugimoto M, Am J Ceram Soc 82 (1999) 269.

    Article  Google Scholar 

  11. Bahadur D, Bull Mater Sci 15 (1992) 431.

    Article  Google Scholar 

  12. Nicolae R, Elena R, Florin T, and Popa P D, Sens Transducers J 78 (2007) 1134.

    Google Scholar 

  13. Gul I H, Ahmed W, and Maqsood A, J Magn Mater 320 (2008) 270.

    Article  Google Scholar 

  14. Van Uitert L G, J Chem Phys 24 (1955) 306.

    Article  Google Scholar 

  15. Gopal Reddy C V, Manorama S V, and Rao V J, J Mater Sci Lett 19 (2000) 775.

    Article  Google Scholar 

  16. Liu Y L, Liu Z M, Yang Y, Yang H F, Shen G L, and Yu R Q, Sens Actuators B 107 (2005) 600.

    Article  Google Scholar 

  17. Zenger M, Int J Mater Prod Technol 9 (1994) 265.

    Google Scholar 

  18. Tyagi S, Baskey H B, Agarwala R C, Agarwala V, and Shami T C, Ceram Int 37 (2011) 2631.

    Article  Google Scholar 

  19. Tyagi S, Baskey H B, Agarwala R C, Agarwala V, and Shami T C, J Electron Mater 40 (2011) 2004.

    Article  Google Scholar 

  20. Ataie A, Heshmati-Manesh S, and Kazempour H, J Mater Sci 37 (2002) 2125.

    Article  Google Scholar 

  21. Ataie A, and Heshmati-Manesh S, J Eur Ceram Soc 21 (2001) 1951.

    Article  Google Scholar 

  22. Jang J S, Hong S J, and Lee J S, J Korean Phys Soc 54 (2009) 204.

    Article  Google Scholar 

  23. Joshi G P, Saxena N S, Mangal R, Mishra A, and Sharma T P, Bull Mater Sci 26 (2003) 387.

    Article  Google Scholar 

  24. Zhang G, Li C, and Cheng F, Chen J, Sens Actuators B 120 (2007) 403.

    Article  Google Scholar 

  25. Yamazoe N, Sens Actuators B 5 (1991) 7.

    Article  Google Scholar 

  26. Kadu A V, Jagtap S V, and Chaudhari G N, Curr Appl Phys 9 (2009) 1246.

    Article  Google Scholar 

  27. Arshak K, and Gaidan I, Mater Sci Eng B 118 (2005) 44.

    Article  Google Scholar 

  28. Moseley P T, Sens Actuators B 3 (1991) 167.

    Article  Google Scholar 

  29. Rezlescu N, Rezlescu E, Tudorache F, and Popa P D, Romanian Rep Phys 61 (2009) 223.

    Google Scholar 

  30. Kapase V D, Ghosh S A, Raghuwanshi F C, Kapase S D, and Khandekar U S, Talanta 78 (2009) 19.

    Article  Google Scholar 

  31. Rezlescu N, Rezlescu E, Tudorache F, and Popa P D, Sens Transducers 78 (2007) 1134.

    Google Scholar 

  32. Jiao Z, Wu M. Gu J, and Qin Z, IEEE Sens J 3 (2003) 435.

    Article  Google Scholar 

  33. Mukherjee K, and Majumder S B, Sens Actuators B 162 (2012) 229.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-Central Scientific Instruments Organization, Chandigarh for the support and the encouragement provided to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Batra, N. & Paul, A.K. Influence of Temperature on Reducing Gas Sensing Performance of Nanocrystalline Zinc Ferrite. Trans Indian Inst Met 68, 707–713 (2015). https://doi.org/10.1007/s12666-014-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0503-7

Keywords

Navigation