Skip to main content
Log in

Cavitation Erosion Behavior and Mechanism of HVOF Sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl Solution

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A WC-10Co-4Cr coating was prepared by high-velocity oxygen-fuel (HVOF) thermal spraying process. The cavitation erosion (CE) characteristics of the coating as well as the stainless steel 1Cr18Ni9Ti were investigated in 3.5 wt% NaCl solution. The coating exhibited higher CE resistance than that of the stainless steel 1Cr18Ni9Ti. After being eroded for 20 h, the CE volume loss of the stainless steel 1Cr18Ni9Ti is 3.22 times to that of the coating. The removal mechanism for the coating was erosion of the binder phase first, followed by brittle detachment of hard phases as a result of the action of corrosion and mechanical effect. The cracks were found to initiate at the carbide-binder interface and the edge of the pores, leading to craters on the surface and accelerating the damage of the coating. Fatigue and plastic deformation were found to be the material removal mechanism for the substrate steel 1Cr18Ni9Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stewart D A, Shipway P H, and McCartney D G, Acta Mater 48 (2000) 1593.

    Article  Google Scholar 

  2. Hazra S, Sabiruddin K, and Bandyopadhyay P P, Surf Eng 28 (1) (2012) 37.

    Article  Google Scholar 

  3. Bhandari S, Singh H, Kumar H, and Rastogi V, J Therm Spray Technol 21(5) (2012) 1054.

    Article  Google Scholar 

  4. Goyal D K, Singh H, Kumar H, and Sahni V, Wear 289 (2012) 46.

    Article  Google Scholar 

  5. Yoganandh J, Natarajan S, and Kumaresh Babu S P, Trans Ind Inst Met 66 (4) (2013) 437.

    Article  Google Scholar 

  6. Ang A S M, Berndt C C, and Cheang P, Surf Coat Technol 205 (2011) 3260.

    Article  Google Scholar 

  7. Souza V A D, and Neville A, Wear 263 (2007) 339.

    Article  Google Scholar 

  8. Tucker Jr. RC, in: Surface Engineering, ASM Handbook, 5, (eds) Lampman S R, Reidenbach F, ASM International, Materials Park, Ohio (1994), p 497.

    Google Scholar 

  9. Karimi A, and Martin J L, Int Met Rev 31 (1986) 1.

    Article  Google Scholar 

  10. Grewal H S, Agrawal A, Singh H, and Arora H S, Trans Ind Inst Met 65(6) (2012) 731.

    Article  Google Scholar 

  11. Hu H X, Jiang S L, Tao Y S, Xiong T Y, and Zheng Y G, Nucl Eng Des 241 (2011) 4929.

    Article  Google Scholar 

  12. Grewal H S, Singh H, and Agrawal A, Wear 301 (2013) 424.

    Article  Google Scholar 

  13. Wang B, Wang Y D, and Zhang Z H, Trans Nonferrous Met Soc China 13 (2003) 893.

    Google Scholar 

  14. Sugiyama K, Nakahama S, Hattori S, and Nakano K, Wear 258 (2005) 768.

    Article  Google Scholar 

  15. Oka Y I, and Miyata H, Wear 267 (2009) 1804.

    Article  Google Scholar 

  16. Wu Y P, Hong S, Zhang J F, He Z H, Guo W M, Wang Q, and Li G Y, Int J Refract Met Hard Mater 32 (2012) 21.

    Article  Google Scholar 

  17. Lima M M, Godoy C, Modenesi P J, Avelar-Batista J C, Davison A, and Matthews A, Surf Coat Technol 177–178 (2004) 489.

    Article  Google Scholar 

  18. Ding Z X, Chen W, and Wang Q, Trans Nonferrous Met Soc China 21 (2011) 2231.

    Article  Google Scholar 

  19. Santa J F, Espitia L A, Blanco J A, Romo S A, and Toro A, Wear 267 (2009) 160.

    Article  Google Scholar 

  20. Hong S, Wu Y P, Gao W W, Wang B, Guo W M, and Lin J R, Surf Eng 30(1) (2014) 53.

    Article  Google Scholar 

  21. ASTM G32-10, Standard test method for cavitation erosion using vibratory apparatus, ASTM International, New york (2010).

  22. Wu Y P, Lin P H, Chu C L, Wang Z H, Cao M, and Hu J H, Mater Lett 61 (2007) 1867.

    Article  Google Scholar 

  23. Li C J, Li W Y, and Wang Y Y, Surf Coat Technol 198 (2005) 469.

    Article  Google Scholar 

  24. Hong S, Wu Y P, Wang Q, Ying G B, Li G Y, Gao W W, Wang B, and Guo W M, Surf Coat Technol 225 (2013) 85.

    Article  Google Scholar 

  25. Hong S, Wu Y P, Zheng Y G, Wang B, Gao W W, and Lin J R, Surf Coat Technol 235 (2013) 582.

    Article  Google Scholar 

  26. Hong S, Wu Y P, Wang Q, Li G Y, Ying G B, Wang B, and Gao W W, Surf Eng 29(8) (2013) 588.

    Article  Google Scholar 

  27. Hong S, Wu Y P, Li G Y, Wang B, Gao W W, and Ying G B, J Alloys Compd 581 (2013) 398.

    Article  Google Scholar 

  28. Osterman A, Dular M, Hočevar M, and Širok B, Stroj Vestn J Mech Eng, 56(9) (2010) 527.

    Google Scholar 

  29. Jasionowski R, and Dariusz Z, Proc 15th Int Conf on Properties of water and steam. The International Association for the Properties of Water and Steam (IAPWS) and VDI–The Association of German Engineers, Berlin Sept 2008.

  30. Lin C J, Chen K C, and He J L, Wear 261 (2006) 1390.

    Article  Google Scholar 

  31. Ahmed N, Bakare M S, McCartney D G, and Voisey K T, Surf Coat Technol 204 (2010) 2294.

    Article  Google Scholar 

  32. Brunatto S F, Allenstein A N, Allenstein C L M, and Buschinelli A J A, Wear 274–275 (2012) 220.

    Article  Google Scholar 

  33. Zhang X B, Liu C S, Liu X D, Dong J, and Yu B, Int J Miner Metall Mater 16(2) (2009) 203.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Grant No. 51131008), the Fundamental Research Funds for the Central Universities (Grant Nos. 2013B34414, 2013B22514, and 2014B02314) and the Research and Innovation Project for College Graduates of Jiangsu Province (Grant No. CXLX12_0244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Wu, Y., Zhang, J. et al. Cavitation Erosion Behavior and Mechanism of HVOF Sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl Solution. Trans Indian Inst Met 68, 151–159 (2015). https://doi.org/10.1007/s12666-014-0440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0440-5

Keywords

Navigation