Skip to main content
Log in

Risk assessment of potentially toxic elements in intermittent rivers, “fiumara”, flowing in the Gulf of Milazzo (Sicily, Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Increasing human activities in coastal areas need careful assessments of both environmental and human health risk. Particular attention needs rivers, as they are responsible for the drainage and transport of contaminant loads. Such aspects have been poorly investigated in intermittent rivers and ephemeral streams (IRES) despite they represent most of water pathways in the world. In five IRES of the highly anthropized Gulf of Milazzo (North-Eastern Sicily, Mediterranean Sea), silty-clay sediments from dry riverbed have been investigated to evaluate environmental risk by heavy metal contamination. The ICP-MS analysis, apart from a minor enrichment in Mn, showed average concentrations of Zn, Cu, Pb, Ni, Co, and Cd lower than warm-temperate coastal areas and European rivers, background continental crust, background shale, and to the quality guidelines for sediments (SQGs). The investigated IRES were found unpolluted, and their air-exposed riverine sediments cannot be considered responsible for human health risk. However, the slight increase in some contaminant concentrations locally reported needs to be carefully considered, since clearly associated to a condition of disorderly anthropization. Lastly, the needing to better understand the IRES role in dynamics of HMs contamination in Mediterranean, subtropical, and semiarid regions worldwide, is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramov SM, Tejada J, Grimma L, Schädler F, Bulaev A, Tomaszewski EJ, Byrne JM, Straub D, Thorwarth H, Amils R, Kleindienst S, and Kappler A (2020) Role of biogenic Fe (III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. Sci Total Environ 718. https://doi.org/10.1016/j.scitotenv.2020.137294.

  • Alharbi T, El-Sorogy A (2019) Assessment of seawater pollution of the Al-Khafji coastal area, Arabian Gulf, Saudi Arabia. Environ Monit Assess 191:1–11. https://doi.org/10.1007/s10661-019-7505-1

    Article  CAS  Google Scholar 

  • Alharbi T, Nour HE, Al-Al-Kahtany K, Giacobbe S, El-Sorogy A (2023) Sediment’s quality and health risk assessment of heavy metals in the Al-Khafji area of the Arabian Gulf. Saudi Arabia Environmental Earth Sciences 82(20):471. https://doi.org/10.1007/s12665-023-11171-z

    Article  CAS  Google Scholar 

  • Al-Hashim MH, El-Sorogy AS, Al Qaisi S, Alharbi T (2021) Contamination and ecological risk of heavy metals in Al-Uqair coastal sediments, Saudi Arabia. Mar Pollut Bull 171. https://doi.org/10.1016/j.marpolbul.2021.112748.

  • Al-Kahtany K, El-Sorogy A, Alharbi T, Giacobbe S, Nour HE (2023b) Health risk assessment and contamination of potentially toxic elements in southwest of the Red Sea coastal sediment. Regional Studies in Marine Science 65:103103. https://doi.org/10.1016/j.rsma.2023.103103

    Article  Google Scholar 

  • Al-Kahtany K, Nour HE, El-Sorogy AS, Alharbi T (2023c) Ecologicl and health risk assessment of heavy metals contamination in mangrove sediments. Red Sea Coast Marine Pollution Bulletin 192:115000. https://doi.org/10.1016/j.marpolbul.2023.115000

    Article  CAS  Google Scholar 

  • Alzahrani H, El-Sorogy AS, Qaysi S, Alshehri F (2023) Contamination and risk assessment of potentially toxic elements in coastal sediments of the area between Al-Jubail and Al-Khafji, Arabian Gulf, Saudi Arabia. Water 15. https://doi.org/10.3390/w15030573.

  • Andronico D, Spinetti C, Cristaldi A, Buongiorno MF (2009) Observations of Mt. Etna volcanic ash plumes in 2006: An integrated approach from ground-based and polar satellite NOAA–AVHRR monitoring system. J Volcanol Geotherm Res 180:135–147. https://doi.org/10.1016/j.jvolgeores.2008.11.013.

  • Aung PP, Mao Y, Hu T, Qi S, Tian Q, Chen Z, Xing X (2019) Metal concentrations and pollution assessment in bottom sediments from Inle Lake, Myanmar. J Geochem Explor 207. https://doi.org/10.1016/j.gexplo.2019.106357.

  • Banegas-Medina A, Montes I-Y, Tzoraki O, Brendonck L, Pinceel T, Diaz G, Arriagada P, Arumi J-L, Pedreros P, Figueroa R (2021) Hydrological, environmental and taxonomical heterogeneity during the transition from drying to flowing conditions in a Mediterranean intermittent river. Biology 10. https://doi.org/10.3390/biology10040316.

  • Di Bella G, Pizzullo G, Bua GD, Potortì AG, Santini A, Giacobbe S (2018) Mapping toxic mineral contamination: the southern oyster drill, S. haemastoma (L., 1767), as evaluable sentinel species. Environ Monit Assess 190. https://doi.org/10.1007/s10661-017-6380-x.

  • Di Bella G, Bua GD, Fede MR, Mottese AF, Potortì AG, Cicero N, Benameur Q, Dugo G, Lo Turco V (2020) Potentially toxic elements in Xiphias gladius from Mediterranean Sea and risks related to human consumption. Mar Pollut Bull 159. https://doi.org/10.1016/j.marpolbul.2020.111512.

  • Bernal S, von Schiller D, Sabater F, Martı E (2013) Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42. https://doi.org/10.1007/s10750-012-1246-2

    Article  CAS  Google Scholar 

  • Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29. https://doi.org/10.1007/s10750-013-1634-2

    Article  Google Scholar 

  • Brugnone F, D’Alessandro W, Parello F, Liotta M, Bellomo S, Prano V, Li Vigni L, Sprovieri M, Calabrese S (2023) Atmospheric Deposition around the Industrial Areas of Milazzo and Priolo Gargallo (Sicily–Italy)—Part A: Major Ions. Int J Env Res Pub He 20. https://doi.org/10.3390/ijerph20053898.

  • Buccione R, Fortunato E, Paternoster M, Rizzo G, Sinisi R, Summa V, Mongelli G (2021) Mineralogy and heavy metal assessment of the Pietra del Pertusillo reservoir sediments (Southern Italy). Environ Sci Pollut Res 28:4857–4878. https://doi.org/10.1007/s11356-020-10829-6

    Article  CAS  Google Scholar 

  • Cai LM, Xu ZC, Ren M, Guo Q, Hu X, Hu G, Wan H, Peng P (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province. China Ecotoxicol Environ Saf 78:2–8. https://doi.org/10.1016/j.ecoenv.2011.07.004

    Article  CAS  Google Scholar 

  • Calmuc VA, Calmuc M, Arseni M, Topa CM, Timofti M, Burada A, Iticescu C, Georgescu LP (2021) Assessment of Heavy Metal Pollution Levels in Sediments and of Ecological Risk by Quality Indices, Applying a Case Study: The Lower Danube River, Romania. Water 13. https://doi.org/10.3390/w13131801.

  • Cangemi M, Madoni P, Albano L, Bonfardeci A, Di Figlia MG, Di Martino RMR, Nicolosi M, Favara R (2019) Heavy Metal Concentrations in the Groundwater of the Barcellona-Milazzo Plain (Italy): Contributions from Geogenic and Anthropogenic Sources. Int J Env Res Pub He 16. https://doi.org/10.3390/ijerph16020285.

  • Chahinian N, Bancon-Montigny C, Caro A, Got P, Perrin JL, Rosain D, Rodier C, Picot B, Tournoud MG (2012) The role of river sediments in contamination storage downstream of a waste water treatment plant in low flow conditions: Organotins, faecal indicator bacteria and nutrients. Estuarine, Coastal and Shelf Science 114. https://doi.org/10.1016/j.ecss.2011.09.007

  • Cooper SD, Lake PS, Sabater S, Melack JM, Sabo JL (2013) The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia 719:383–425. https://doi.org/10.1007/s10750-012-1333-4

    Article  CAS  Google Scholar 

  • D’Agostino F, Bellante A, Quinci E, Gherardi S, Placenti F, Sabatino N, Buffa G, Avellone G, Di Stefano V, Del Core M (2020) Persistent and Emerging Organic Pollutants in the Marine Coastal Environment of the Gulf of Milazzo (Southern Italy): Human Health Risk Assessment. Front Environ Sci 8. https://doi.org/10.3389/fenvs.2020.00117.

  • D’Alessandro M, Esposito V, Giacobbe S, Renzi M, Mangano MC, Vivona P, Consoli P, Scotti G, Andaloro F, Romeo T (2016) Ecological assessment of a heavily human stressed area in the Gulf of Milazzo, Central Mediterranean Sea: an integrated study of biological, physical and chemical indicators. Mar Pollut Bull 106:260–273. https://doi.org/10.1016/j.marpolbul.2016.01.021

    Article  CAS  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235

    Article  Google Scholar 

  • Davis AP, Shokouhian M, Ni SB (2001) Loading estimates of lead, copper, cadmium and zinc in urban runoff from specific sources. Chemosphere 44:997–1009. https://doi.org/10.1016/s0045-6535(00)00561-0

    Article  CAS  Google Scholar 

  • De Girolamo AM, Calabrese A, Pappagallo G, Santese G, Lo Porto A (2012) Impact of anthropogenic activities on a temporary river. Fresenius Environ Bull 21(11):3278–3286

    Google Scholar 

  • Duplay J, Semhi K, Mey M, Messina A, Quaranta G, Huber F, Aubert A (2014) Geogenic versus anthropogenic geochemical influence on trace elements contents in soils from the Milazzo Peninsula. Chem Erde 74:691–704. https://doi.org/10.1016/j.chemer.2014.04.006

    Article  CAS  Google Scholar 

  • El-Sorogy AS, Youssef M, Al-Kahtany K (2016) Integrated assessment of the Tarut Island coast, Arabian Gulf, Saudi Arabia. Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-6150-z.

  • El-Sorogy AS, Youssef M, Al-Hashim MH (2023) Water quality assessment and environmental impact of heavy metals in the Red Sea coastal seawater of Yanbu, Saudi Arabia. Water 15. https://doi.org/10.3390/w15010201.

  • Faměra M, Grygar TM, Ciszewski D, Czajka A, Álvarez-Vázquez MÁ, Hron K, Facevicová K, Hýlová V, Tumová Š, Světlík I, Zimová K, Dvořáková K, Szypułae B, Hošek M, Henych J (2021) Anthropogenic records in a fluvial depositional system: The Odra River along the Czech-Polish border. Anthropocene 34. https://doi.org/10.1016/j.ancene.2021.100286.

  • Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Haz Mater 165:1008–1015. https://doi.org/10.1016/j.jhazmat.2008.10.118

    Article  CAS  Google Scholar 

  • Gómez R, Hurtado I, Suárez ML, Vidal-Abarca MR (2005) Ramblas in south-east Spain: threatened and valuable ecosystems. Aquat Conserv 15:387–402

    Article  Google Scholar 

  • Gómez-Gener L, Siebers AR, Arce MI, Arnon S, Bernal S, Bolpagni R, Datry T, Gionchetta G, Grossart H-P, Mendoza-Lera C, Pohl V, Risse-Buhl U, Shumilova O, Tzoraki O, von Schiller D, Weigand A, Weigelhofer G, Zak D, Zoppini A. (2021) Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth-Sci Rev 220. https://doi.org/10.1016/j.earscirev.2021.103724.

  • Häder DP, Helbling EW, Villafañe VE (2021) Anthropogenic pollution of aquatic ecosystems. Springer Cham, New York. https://doi.org/10.1007/978-3-030-75602-4

    Article  Google Scholar 

  • Hao J, Ren J, Tao L, Fang H, Gao S., Chen Y (2021) Pollution evaluation and sources identification of heavy metals in surface sediments from upstream of Yellow River. Pol J Environ Stud 30:1161–1169. https://doi.org/10.15244/pjoes/125485.

  • Hoang H-G, Chiang C-F, Lin C, Wu C-Y, Lee C-W, Cheruiyot NK, Tran H-T, Bui X-T (2021) Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environ Pollut 285. https://doi.org/10.1016/j.envpol.2021.117414.

  • Interdonato M, Bitto A, Pizzino G, Irrera N, Pallio G, Mecchio A, Cuspilici A, Minutoli L, Altavilla D, Squadrito F (2014) Levels of heavy metals in adolescents living in the industrialised area of Milazzo-Valle del Mela (northern Sicily). J Environ Public Health. https://doi.org/10.1155/2014/326845

    Article  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7 (2), 60e72.

  • Jaskuła J, Sojka M, Fiedler M, Wróżyński R (2021) Analysis of Spatial Variability of River Bottom Sediment Pollution with Heavy Metals and Assessment of Potential Ecological Hazard for the Warta River, Poland. Minerals 11. https://doi.org/10.3390/min11030327.

  • Jones B, Alyazichi YM, Low C, Goodfellow A, Chenhall B, Morrison J (2019). Distribution and sources of trace element pollutants in the sediments of the industrialized Port Kembla Harbour, New South Wales, Australia. Environ Earth Sci 78. https://doi.org/10.1007/s12665-019-8358-1.

  • Karaouzas I, Kapetanaki N, Mentzafou A, Kanellopoulos TD, Skoulikidis N (2021) Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere 263, https://doi.org/10.1016/j.chemosphere.2020.128192.

  • Kumar, V., Daman Parihar, R., Sharma, A., Bakshi, P., Preet Singh Sidhu, G., Shreeya Bali, S., Karaouzas, I., Bhardwaj, R., Kumar Thukral, A., Gyasi-Agyei, Y., Rodrigo-Cominoij, J., 2019. Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 236, 124364

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97. https://doi.org/10.1007/BF02472006

    Article  Google Scholar 

  • Lopez-Doval JC, Ginebreda A, Caquet T, Dahm CN, Petrovic M, Barcelo D, Munoz I (2013) Pollution in Mediterranean-climate rivers. Hydrobiologia 719:427–450. https://doi.org/10.1007/s10750-012-1369-5

    Article  Google Scholar 

  • Machain-Castillo ML, Ruiz-Fernández AC, Alonso-Rodríguez R, Sanchez-Cabeza JA, Gío-Argáez FR, Rodríguez-Ramírez A, Villegas-Hernández R, Mora-García AI, Fuentes-Sánchez AP, Cardoso-Mohedano JG, Hernández-Becerril DU, Esqueda-Lara K, Santiago-Pérez S, Gómez-Ponce MA, Pérez-Bernal LK (2020) Anthropogenic and natural impacts in the marine area of influence of the Grijalva – Usumacinta River (Southern Gulf of Mexico) during the last 45 years. Mar Pollut Bull 156. https://doi.org/10.1016/j.marpolbul.2020.111245.

  • Magand C, Alves MH, Calleja E, Datry T, Dörflinger G, England JF, Gómez R, Jorda-Capdevila D, Marti E, Munne A, Pastor VA, Stubbington R, Tziortzis I, Von Schiller D (2020). Intermittent Rivers and Ephemeral Streams: What Water Managers Need to Know. https://doi.org/10.5281/ZENODO.3888474

  • Magni LF, Castro LN, Rendina AE (2021) Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environ Res 197. https://doi.org/10.1016/j.envres.2021.110979.

  • Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Martínez-Pagán P, de Ignacio-San José C, Lillo J, Faz Á (2020) Abandoned mine tailings affecting riverbed sediments in the Cartagena–La Union District, Mediterranean coastal area (Spain). Remote Sens 12. https://doi.org/10.3390/rs12122042.

  • Massous A, Ouchbani T, Lo Turco V, Litrenta F, Nava V, Albergamo A, Potortì AG, Di Bella G (2023) Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 12. https://doi.org/10.3390/foods12050969.

  • Mishra S, Kumar A, Yadav S, Singhal MK (2017) Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis. Sustain. Water Resour. Manag, India. https://doi.org/10.1007/s40899-017-0141-4

    Book  Google Scholar 

  • Navarrete-Rodríguez G, Castañeda-Chávez MdR, Lango-Reynoso F (2020) Geoacumulation of heavy metals in sediment of the fluvial–lagoon–deltaic system of the Palizada River, Campeche, Mexico. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17030969.

  • Nour HE (2019) Assessment of heavy metals contamination in surface sediments of Sabratha. Northwest Libya Arab J Geosci 12:177. https://doi.org/10.1007/s12517-019-4343-y

    Article  CAS  Google Scholar 

  • Nour HE, Ramadan F, Aita S, Zahran H (2021) Assessment of sediment quality of the Qalubiya drain and adjoining soils, Eastern Nile Delta. Egypt Arab J Geosci 14:535. https://doi.org/10.1007/s12517-021-06891-0

    Article  CAS  Google Scholar 

  • Nour HE, Alshehri F, Sahour H, El-Sorogy A (2022b) Evaluation of sediment and water quality of Ismailia Canal for heavy metal contamination, Eastern Nile Delta, Egypt. Reg Stud Mar Sci 56. https://doi.org/10.1016/j.rsma.2022.102714.

  • Nour HE, Helal S, Abdel Wahab M (2202a) Contamination and health risk assessment of heavy metals in beach sediments of Red Sea and Gulf of Aqaba, Egypt. Mar Pollut Bull 17:113517. https://doi.org/10.1016/j.marpolbul.2022.113517

  • Nour HE (2015) Distribution of hydrocarbons and heavy metals pollutants in groundwater and sediments from northwestern Libya. Indian J Sci 44:993–999. WOS:000379195000007

  • Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013

    Article  CAS  Google Scholar 

  • Pepe F, Scopelliti G, Di Leonardo R, Ferruzza G (2010) Granulometry, mineralogy and trace elements of marine sediments from the Gulf of Milazzo (NE Sicily): evaluation of anthropogenic impact. Ital J Geosci 129:385–394. https://doi.org/10.3301/IJG.2010.23

    Article  Google Scholar 

  • Perera MDD, Gomes PIA (2023) Relationships amongst water and sediment qualities, discharge, and allochthonous inputs of intermittent streams in tropical dry climates: Implications on stream management. Ecological Engineering 194. https://doi.org/10.1016/j.ecoleng.G.2023.107053.

  • Pierdomenico M, Casalbore D, Chiocci FL (2019) Massive benthic litter funnelled to deep sea by fash-food generated hyperpycnal flows. Sci Rep 9. https://doi.org/10.1038/s41598-019-41816-8.

  • Ramadan F, Nour HE, Aita S, Zahran H (2021) Evaluation of heavy metals accumulation risks in water of the Qalubiya drain in East Delta. Egypt Arab J Geosci 14:1750. https://doi.org/10.1007/s12517-021-08198-6

    Article  CAS  Google Scholar 

  • Rosado J, Morais M, Serafim A, Pedro A, Silva H, Potes M, Brito D, Salgado R, Neves R, Lillebø A, Chambel A, PIRES V, Gomes CP, Pinto P (2012) Key long term patterns for the management and Conservation of temporary Mediterranean streams: a case study of the Pardiela river, southern Portugal (Guadiana catchment), in: Boon, P.J., Raven, P.J., (Eds), River Conservation and Management. John Wiley and Sons, Ltd, pp 273–283.

  • Salati S, Moore F (2010) Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ Monit Assess 164:677–689. https://doi.org/10.1007/s10661-009-0920-y

    Article  CAS  Google Scholar 

  • Sánchez-Montoya MM, Vidal-Abarca MR, Puntí T, Poquet JM, Prat N, Rieradevall M, Alba-Tercedor J, Zamora-Muñoz C, Toro M, Robles S, Álvarez M, Suárez ML (2009) Defining criteria to select reference sites in Mediterranean streams. Hydrobiologia 619:39–54

    Article  Google Scholar 

  • Şimşek A, Özkoç HB, Bakan G (2022) Environmental, ecological and human health risk assessment of heavy metals in sediments at Samsun-Tekkeköy, North of Turkey. Environ Sci Pollut Res 29:2009–2023. https://doi.org/10.1007/s11356-021-15746-w

    Article  CAS  Google Scholar 

  • Skoulikidis NT, Sabater S, Datry T, Morais MM, Buffagni A, Dörflinger G, Zogaris S, Sánchez-Montoya MdM, Bonada N, Kalogianni E, Rosado J, Vardakas L, De Girolamo AM, Tockner K (2017) Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci Total Environ 577:1–18. https://doi.org/10.1016/j.scitotenv.2016.10.147

    Article  CAS  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  • Triolo L, Binazzi A, Cagnetti P, Carconi P, Correnti A, De Luca E, Di Bonito R, Grandoni G, Mastrantonio M, Rosa S, Schimberni M, Uccelli R, Zappa G (2008) Air pollution impact assessment on agroecosystem and human health characterisation in the area surrounding the industrial settlement of Milazzo (Italy): a multidisciplinary approach. Environ Monit Assess 140:191–209. https://doi.org/10.1007/s10661-007-9859-z

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192. https://doi.org/10.1130/0016-7606

    Article  CAS  Google Scholar 

  • Tzoraki O, Nikolaidis NP, Amaxidis Y, Skoulikidis NT (2007) In-stream biogeochemical processes of a temporary river. Environ Sci Technol 41:1225–1231. https://doi.org/10.1021/es062193h

    Article  CAS  Google Scholar 

  • Tzoraki O, Karaouzas I, Patrolecco L, Skoulikidis N, Nikolaidis PN (2015) Polycyclic aromatic hydrocarbons (PAHs) and heavy metal occurrence in bed sediments of a temporary river. Water Air Soil Pollut 226:421. https://doi.org/10.1007/s11270-015-2671-4

    Article  CAS  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. J Chem Eng 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  • Ukah BU, Egbueri JC, Unigwe CO, Ubido OE (2019) Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int J Energy Res 3:291–303. https://doi.org/10.1007/s42108-019-00039-3

    Article  Google Scholar 

  • Valdés J, Tapia J (2019) Spatial monitoring of metals and As in coastal sediments of northern Chile: An evaluation of background values for the analysis of local environmental conditions. Mar Poll Bull 145:624–640. https://doi.org/10.1016/j.marpolbul.2019.06.036

    Article  CAS  Google Scholar 

  • Weber P, Behr ER, De Lellis KC, Secretti Vendruscolo D, Flores EMM, Dressler VL, Baldisserotto B (2013) Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J 106:61–66. https://doi.org/10.1016/j.microc.2012.05.004

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan S, Mohd Y, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https://doi.org/10.3389/fpls.2020.00359

    Article  Google Scholar 

  • Zhuang W, Ying SC, Frie AL, Wang Q, Song J, Liu Y, Chen Q, Lai X (2019) Distribution, pollution status, and source apportionment of trace metals in lake sediments under the influence of the South-to-North Water Transfer Project, China. Sci Total Environ 671:108–118. https://doi.org/10.1016/j.scitotenv.2019.03.306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project no (RSP2024R139).

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project no (RSP2024R139).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sampling plane and sampling collection were performed by Salvatore Giacobbe. Material preparation, data collection and analysis were performed by Di Bella Giuseppa and Vincenzo Nava. Statistical elaboration was performed by Abdelbaset El-Sorogy, Hamdy Nour, and Khaled Al-Kahtany. The first draft of the manuscript was written by Salvatore Giacobbe, Hamdy Nour and Abdelbaset El-Sorogy, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Salvatore Giacobbe.

Ethics declarations

Competing Interests

Authors declare that any financial or non-financial interests is directly or indirectly related to the work submitted for publication.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

The authors declare that this work does not contain any material from any individual.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abdelbaset S. El-Sorogy co-first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Bella, G., El-Sorogy, A.S., Giacobbe, S. et al. Risk assessment of potentially toxic elements in intermittent rivers, “fiumara”, flowing in the Gulf of Milazzo (Sicily, Italy). Environ Earth Sci 83, 321 (2024). https://doi.org/10.1007/s12665-024-11631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11631-0

Keywords

Navigation