Skip to main content

Advertisement

Log in

A new simple statistical method for the unsupervised clustering of the hydrodynamic behavior at different boreholes: analysis of the obtained clusters in relation to geological knowledge

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Karst aquifers are complex and related to numerous management issues, especially concerning flood risks or the availability of water resource. Given the stakes involved, it is necessary to obtain the best possible knowledge of the hydrodynamic behavior of these aquifers. In this context, this article presents two methodological advances concerning the hydrodynamic behavior of the water level within a borehole, based on the analysis of cumulative frequency curve of groundwater levels. First of all, a new simple semi-automated unsupervised method of borehole clustering, and second, an interpretation table of the hydrodynamic properties of these boreholes are proposed. These two advances are applied to the Cadarache site of the French Alternative Energies and Atomic Energy Commission (CEA) in south-eastern France, which is prone to rapid groundwater floods. This study, conducted on 75 boreholes, allows identifying several clusters of boreholes. Three of them appear to be representative of specific areas and show a relevant relation between each cluster and its geological structure. A punctual validation of the proposed approach is made on the cores available for a specific drilling. Thereby, the obtained clusters on the Cadarache site are consistent with the role of lineaments, NW–SE and NE–SW oriented, previously identified by regional tectonic or structural studies as preferential groundwater flow paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used in this article are the property of CEA Cadarache. They are not associated with this article.

References

  • Bailly-Comte V (2008) Interactions hydrodynamiques surface/souterrain en milieu karstique- Approche descriptive, analyse fonctionnelle et modélisation hydrologique appliquées au bassin versant expérimental du Coulazou, Causse d’Aumelas, France. These de doctorat, Hydrogéologie, Université Montpellier II

  • Bakalowicz M (1999) Connaissance et gestion des ressources en eaux souterraines dans les régions karstiques. SDAGE Rhône Méditerranée Corse

  • Boukharouba K, Roussel P, Dreyfus G, Johannet A (2013) Flash flood forecasting using Support Vector Regression: an event clustering based approach. In: 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). pp 1–6

  • Darras T, Borrell Estupina V, Kong-A-Siou L, Vayssade B, Johannet A, Pistre S (2015) Identification of spatial and temporal contributions of rainfalls to flash floods using neural network modelling: case study on the Lez basin (southern France). Hydrol Earth Syst Sci 19:4397–4410

    Article  Google Scholar 

  • Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10:112–122. https://doi.org/10.3138/FM57-6770-U75U-7727

    Article  Google Scholar 

  • Erguy M, Morilhat S, Artigue A et al (2022) Application of statistical approaches to piezometry to improve the understanding of the karst aquifer hydrodynamic behaviours at the Cadarache CEA centre (France). Eurokarst 2022, Malaga. Springer International Publishing

    Google Scholar 

  • Fenart P (2008) Analyse préliminaire à l’étude de traçage. Centre CEA Cadarache-Sources de l’Abéou. Rapport CEA Cadarache

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley

    Book  Google Scholar 

  • GEOTER (2017) Bilan et hiérarchisation des failles cartographiées sur le site de Cadarache. CEA

  • Gholami V, Khaleghi MR, Pirasteh S, Booij MJ (2022) Comparison of self-organizing map, artificial neural network, and co-active neuro-fuzzy inference system methods in simulating groundwater quality: geospatial artificial intelligence. Water Resour Manag 36:451–469

    Article  Google Scholar 

  • Goldscheider N, Chen Z, Auler AS et al (2020) Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28:1661–1677. https://doi.org/10.1007/s10040-020-02139-5

    Article  Google Scholar 

  • Guerin R (2001) Synthèse des connaissances géologiques et hydrogéologiques. Rapport CEA Cadarache

  • Haaf E, Barthel R (2018) An inter-comparison of similarity-based methods for organisation and classification of groundwater hydrographs. J Hydrol 559:222–237. https://doi.org/10.1016/j.jhydrol.2018.02.035

    Article  Google Scholar 

  • Han J-C, Huang Y, Li Z et al (2016) Groundwater level prediction using a SOM-aided stepwise cluster inference model. J Environ Manag 182:308–321. https://doi.org/10.1016/j.jenvman.2016.07.069

    Article  Google Scholar 

  • Johannet A, Mangin A, D’Hulst D (1994) Subterranean Water Infiltration Modelling by Neural Networks : Use of Water Source Flow. In Proc. of ICANN 1994. M. Marinaro and P.G. Morasso eds, Springer, pp 1033–1036

  • Jourde H, Roesch A, Guinot V, Bailly-Comte V (2007) Dynamics and contribution of karst groundwater to surface flow during Mediterranean flood. Environ Geol 51:725–730. https://doi.org/10.1007/s00254-006-0386-y

    Article  Google Scholar 

  • Jourde H, Mazzilli N, Lecoq N et al (2015) KARSTMOD: a generic modular reservoir model dedicated to spring discharge modeling and hydrodynamic analysis in karst. In: Andreo B, Carrasco F, Durán JJ et al (eds) Hydrogeological and environmental investigations in karst systems. Springer Berlin Heidelberg, Heidelberg, pp 339–344

    Chapter  Google Scholar 

  • Kong a Siou L, Johannet A, Borrell V, Pistre S (2011) Complexity selection of a neural network model for karst flood forecasting: the case of the Lez Basin (southern France). J Hydrol 403:367–380. https://doi.org/10.1016/j.jhydrol.2011.04.015

    Article  Google Scholar 

  • Kong-A-Siou L, Fleury P, Johannet A et al (2014) Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer. J Hydrol 519:3178–3192. https://doi.org/10.1016/j.jhydrol.2014.10.041

    Article  Google Scholar 

  • Kovács A, Sauter M (2007) Modelling karst hydrodynamics. Methods in karst hydrogeology. CRC Press

    Google Scholar 

  • López-Chicano M, Calvache ML, Martın-Rosales W, Gisbert J (2002) Conditioning factors in flooding of karstic poljes—the case of the Zafarraya polje (South Spain). CATENA 49:331–352. https://doi.org/10.1016/S0341-8162(02)00053-X

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Thèse de doctorat, Sciences de la Terre, Université de Dijon

  • Marsaud B (1997) Structure et fonctionnement de la zone noyée des karsts à partir des résultats expérimentaux. Thèse de doctorat, BRGM, Université Paris XI Orsay

  • Naranjo-Fernández N, Guardiola-Albert C, Aguilera H et al (2020) Clustering groundwater level time series of the exploited almonte-marismas aquifer in southwest Spain. Water 12:1063. https://doi.org/10.3390/w12041063

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Vousoughi FD, Alami MT (2012) Classification of groundwater level data using SOM to develop ANN-based forecasting model. Int J Comput Inform Eng 2:464–469

    Google Scholar 

  • Palasse J-R, Tauveron N, Guerin R, Hillel E (1999) Caractérisation géologique et hydrogéologique de la colline du Medecin: bilan des actions au 01/09/99. CEA Cadarache

  • Pinault J-L, Amraoui N, Golaz C (2005) Groundwater-induced flooding in macropore-dominated hydrological system in the context of climate changes. Water Resour Res. https://doi.org/10.1029/2004WR003169

    Article  Google Scholar 

  • Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Groundwater 45(6):664–671. https://doi.org/10.1111/j.1745-6584.2007.00339.x

    Article  Google Scholar 

  • Quinn P, Parker BL, Cherry JA (2016) Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes. Hydrogeol J 24:59–77. https://doi.org/10.1007/s10040-015-1326-2

    Article  Google Scholar 

  • Raj P (2004) Classification and interpretation of piezometer well hydrographs in parts of southeastern peninsular India. Env Geol 46:808–819. https://doi.org/10.1007/s00254-004-1031-2

    Article  Google Scholar 

  • Saint Fleur B-E, Allier S, Lassara E, Rivet A, Artigue G, Pistre S, Johannet A (2023) Towards a better consideration of rainfall and hydrological spatial features by a deep neural network model to improve flash floods forecasting: case study on the Gardon basin, France. Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01650-w

    Article  Google Scholar 

  • Sokol D (1963) Position and fluctuation of water level in wells perforated in more than one aquifer. J Geophys Res 68(4):1079–1080

    Article  Google Scholar 

  • Taver V (2014) Caractérisation et modélisation hydrodynamique des karsts par réseaux de neurones: application à l’hydrosystème du Lez. Thèse de doctorat, Eaux Continentales et Société, Université Montpellier II

  • Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl Disc 13:335–364. https://doi.org/10.1007/s10618-005-0039-x

    Article  Google Scholar 

  • Weng P, Dörfliger N (2002) Projet PACTES. Module: contribution des eaux souterraines aux crues et inondations ; site de l’Hérault. Rapport BRGM

  • Wunsch A, Liesch T, Broda S (2022) Feature-based groundwater hydrograph clustering using unsupervised self-organizing map-ensembles. Water Resour Manag 36:39–54. https://doi.org/10.1007/s11269-021-03006-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Patrick Lachassagne and Mr. David Labat for their contributions to some very interesting discussions. They would also like to extend their warmest thanks to the reviewers who helped to significantly improve the article.

Funding

Atomic Energy and Alternative Energies Commission, France and IMT Mines Alès, France.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ME, AJ, SP, SM, JT and GA. The first draft of the manuscript was written by ME and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Anne Johannet.

Ethics declarations

Conflict of interest

Partial financial support was received from CEA.The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erguy, M., Morilhat, S., Artigue, G. et al. A new simple statistical method for the unsupervised clustering of the hydrodynamic behavior at different boreholes: analysis of the obtained clusters in relation to geological knowledge. Environ Earth Sci 82, 451 (2023). https://doi.org/10.1007/s12665-023-11066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11066-z

Keywords

Navigation