Skip to main content
Log in

Assessment of the regional subsidence in the lacustrine zone of Mexico City using a geostatistical model

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the last 100 years, the overexploitation of the groundwater resources underlying the lacustrine deposits of Mexico City has trigged regional subsidence that manifests itself through the sinking of the ground surface, damaging infrastructure and public services. In this work, geostatistical tools are used to analyze and assess the evolution of this phenomenon in the city, by considering space–time data from surface benchmarks located in the lacustrine zone. The database is composed of 206 spatial features and 12-time points, for a total of 24 years of monitoring between 1983 and 2007. Here a full grid space–time layout (STF) of the R spacetime package was used, and since this phenomenon is not a stationary process as it presents a trend over time, the spatiotemporal variogram was determined from the stochastic residual function of the process. Marginal and pooled variograms were also determined as initial values to fit the variograms models using the R gstat package. Results show that the separable variogram model was the one that best represented the spatial and temporal correlation of the phenomenon in the area of study. Using this geostatistical model, ground elevations and subsidence rates were predicted in the benchmarks locations for the period 2010–2030. The validation process consisted of comparing direct measurements made in 2016 and the ones obtained from the model for the same year. For the year 2030, the maximum cumulative subsidence value was 13 m, and the highest mean rate was 25.06 cm/year near the Mexico City International Airport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Pebesma 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aguilera P (2013) Catedral Metropolitana: hundimiento y rescate. Chapter II. Universidad Nacional Autónoma de México. Instituto de Ingeniería, Mexico

    Book  Google Scholar 

  • Arroyo D, Ordaz M, Ovando-Shelley E, Guasch JC, Lermo J, Pérez C, Alcántara L, Ramírez-Centeno MS (2013) Evaluation of the change in dominant periods in the lake-bed zone of Mexico City produced by ground subsidence through the use of site amplification factors. Soil Dyn Earthq Eng 44:54–66

    Article  Google Scholar 

  • Avilés J, Pérez-Rocha L (2010) Regional subsidence of Mexico City and its effects on seismic response. Soil Dyn Earthq Eng 44:54–66

    Google Scholar 

  • Bard PY, Campillo M, Chávez-García FJ, Sanchez-Sesma F (1988) The Mexico earthquake of September 19, 1985: a theoretical investigation of large-and small-scale amplification effects in the Mexico City Valley. Earthq Spectra 4:609–633

    Article  Google Scholar 

  • Bilonick RA (1988) Monthly hydrogen ion deposition maps for the northeastern U.S. from, July 1982 to September 1984. Atmos Environ 22(9):1909–1924

    Article  Google Scholar 

  • Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Cabral-Cano E, Dixon TH, Miralles-Wilhelm F, Díaz-Molina O, Sánchez-Zamora O, Carande RE (2008) Space geodetic imaging of rapid land subsidence in Mexico City. Bull Geol Soc Am 120:1556–1566

    Article  Google Scholar 

  • Cabral-Cano E, Díaz Molina O, Delgado-Granados H (2011) Subsidencia y sus mapas de peligro: un ejemplo en el área nororiental de la Zona Metropolitana de la Ciudad de México. Boletín De La Soc Geol Mexicana 63:53–60

    Article  Google Scholar 

  • Carrillo N (1948) Influence of artesian wells in the sinking of Mexico City. Proceedings of the IIth Congress of International Soil Mechanics and Foundation Engineering, Rotterdam 6:156–159

    Google Scholar 

  • Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F (2014) Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 140:94–106

    Article  Google Scholar 

  • Cressie NA (1993) Statistics for spatial data. Wiley, New York

    Book  Google Scholar 

  • Cruickshank C, Herrera I, Yates R, Hennart JP, Balarezo D, Magaña del Toro R (1979) Modelo de predicción del hundimiento del subsuelo del Valle de México. Instituto de Ingeniería, UNAM. Elaborado para el Departamento del Distrito Federal, México.

  • De Cesare L, Myers D, Posa D (2001) Estimating and modeling space-time correlation structures. Statist Probab Lett 51(1):9–14

    Article  Google Scholar 

  • De Iaco S, Myers D, Posa D (2001) Space-time analysis using a general product-sum model. Statist Probab Lett 51(1):9–14

    Article  Google Scholar 

  • De Iaco S, Myers D, Posa D (2011) One strict positive definiteness of product and product-sum covariance models. Journal of Statistical Planning and Inference 141:1132–1140

    Article  Google Scholar 

  • González-Morán T, Rodríguez R, Cortes SA (1999) The Basin of Mexico and its metropolitan area: water abstraction and related environmental problems. J S Am Earth Sci 12:607–613

    Article  Google Scholar 

  • Gräler B, Pebesma E, Heuvelink G (2016) Spatio-Temporal Interpolation using gstat. R J 8(1):204–2018

    Article  Google Scholar 

  • Hernández-Espriú A, Reyna-Gutiérrez JA, Sánchez-León E, Cabral-Cano E, Carrera-Hernández J, Martínez-Santos P, Macías-Medrano S, Falorni G, Colombo D (2014) The DRASTIC-Sg Model: a new extension to the standard DRASTIC approach for mapping groundwater vulnerability in urban aquifers subject to differential land subsidence with application to Mexico City. Hydrogeol J 22:1469–1485

    Article  Google Scholar 

  • Herrera I, Martínez R, Hernández G (1989) Contribución para la administración científica del agua subterránea de la Cuenca de México. Geofís Int 28:297–334

    Google Scholar 

  • Jaime A (1988) Geotecnia y Sismicidad en el Valle de México. Reporte No. D. Serie Azul, Instituto de Ingeniería, UNAM. Mexico.

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann Am Geogr 61:217–244

    Article  Google Scholar 

  • Lesser JM, Cortés M (1998) El hundimiento del terreno en la ciudad de México y sus implicaciones en el sistema de drenaje. Ingeniería Hidráulica En México 3(13):13–18

    Google Scholar 

  • Marsal M (1996) La isla de los perros. El Colegio Nacional, México

    Google Scholar 

  • Marsal RJ, Mazari M (1959) The Subsoil of Mexico City. Escuela de Ingeniería. Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Marsal RJ, Graue R (1969) El subsuelo del lago de Texcoco. Nabor Carrillo Conmemorative Volume: 167–202.

  • Mesri G, Rohsar B, Bohor BF (1975) Composition and compressibility of typical samples of Mexico City clay. Geotechnique 25:527–554

    Article  Google Scholar 

  • Ortiz-Zamora D, Ortega-Guerrero A (2010) Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations. Water Resour Res 46:1–15

    Article  Google Scholar 

  • Osmanoǧlu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinf 13:1–12

    Google Scholar 

  • Ossa A, Romo MP (2007) The sinking of Mexico City: its effects on soil properties and seismic response. Soil Dyn Earthq Eng 44:54–66

    Google Scholar 

  • Ossa A, Botero E, Madrigal MC, Ovando E, Mendoza M, López-Acosta NP (2019) Performance of a pavement foundation system based on the partial compensation of masses method. Soils Found 59:351–366

    Article  Google Scholar 

  • Ovando E, Romo MP, Contreras N, Giralt A (2003) Effects on soil properties of future settlements in downtown Mexico City due to ground water extraction. Geofísica Internacional 42(2):185–204

    Article  Google Scholar 

  • Ovando E, Ossa A, Romo MP (2007) The sinking of Mexico City: its effects on soil properties and seismic response. Soil Dyn Earthq Eng 27(4):333–343

    Article  Google Scholar 

  • Ovando E, Ossa A, Santoyo E (2013) Effects of regional subsidence and earthquakes on arquitectural monuments in Mexico City. Boletín De La Sociedad Geológica Mexicana 65(1):157–167

    Article  Google Scholar 

  • Pebesma E (2012) spacetime: spatio-temporal data in R. J Stat Softw 51:7

    Article  Google Scholar 

  • R Core Team (1993) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Romo MP, Jaime A, Reséndiz D (1988) Mexico earthquake of September 19, 1985: general soil conditions and clay properties in the Valley of Mexico. Earthq Spectra 4:731–752

    Article  Google Scholar 

  • RStudio Team (2015) RStudio: Integrated Development for R. RStudio Inc, Boston

    Google Scholar 

  • SACMEX (2005) Programa de Gestión Integral de los Recursos Hídricos. Sistema de Aguas de la Ciudad de México. Administración Pública del Distrito Federal. Gobierno del Distrito Federal. Décima Quinta Época. 27 de mayo de 2005. No.62-BIS.

  • Santoyo-Villa E, Ovando-Shelley E, Mooser F, León Plata E (2005) Síntesis Geotécnica de la Cuenca del Valle de México. TGC, México D.F.

    Google Scholar 

  • Shapiro NM, Singh SK, Almora D, Ayala M (2001) Evidence of the dominance of higher-mode surface waves in the lake-bed of the Valley of Mexico. Geophys J Int 147:517–527

    Article  Google Scholar 

  • SIMOH (2015) Sistema de Monitoreo de la Piezometría y de los Hundimientos del Valle de México por Extracción de Agua Subterránea. Informe Final elaborado para la Comisión Nacional del Agua (CONAGUA). Convenio: CGPEAYS-UNAM-04/2013. Instituto de Ingeniería de la UNAM.

  • Snepvangers J, Heuvelink G, Huisman J (2003) Soil water content interpolation using spatio—temporal kriging with external drift. Geoderma 112:253–271

    Article  Google Scholar 

  • Tamez E, Ovando-Shelley E, Santoyo E (1997) Underexcavation of the Metropolitan Catedral in Mexico City. Proceedings of the XIVth International Conference on Soil Mechanics and Foundation Engineering, Special Invited Lecture, Hamburg 4:2105–2126

    Google Scholar 

  • Tamez E, Santoyo E, Cuevas A, Ovando-Shelley E (1995) Diagnóstico y proyecto geotécnico. Chapter II. In: Catedral Metropolitana: corrección geométrica, informe técnico. Mexico City: Asociación de Amigos de la Catedral Metropolitana de México, A.C, Zaldívar, S., 41–114.

  • Yin JH, Graham J (1994) Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behavior of clays. Can Geotech J 31(1):42–52

    Article  Google Scholar 

  • Yin JH, Graham J (1996) Modelling of one-dimensional consolidation. Geotechnique 46(3):515–527

    Article  Google Scholar 

Download references

Funding

The paper has not funding for the preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Botero.

Ethics declarations

Conflict of interest

We declare that the authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madrigal, M.C., Botero, E. & Díaz-Ávalos, C. Assessment of the regional subsidence in the lacustrine zone of Mexico City using a geostatistical model. Environ Earth Sci 81, 381 (2022). https://doi.org/10.1007/s12665-022-10492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10492-9

Keywords

Navigation