Skip to main content

Advertisement

Log in

Multivariate analysis to assess the quality of irrigation water in a semi-arid region of north west of Algeria: case of Ghrib reservoir

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Reservoir dams are critical to agriculture, industry, and the needs of humans and wildlife. This study evaluates the water quality of the Ghrib reservoir in north west of Algeria, using Irrigation Water Quality Index (IWQI), sodium absorption rates (SAR) and multivariate statistical methods (Clustering and principal component analysis). The study concerns the analysis of physical and chemical parameters (pH, EC, O2, TUR, Ca, Mg, HCO3, Na, K, BOD, DCO, Cl, PO4, SO3. NH4 et NO3) which were measured at 12 selected points along the reservoir over 8 periods (dry and wet periods) using standard methods. Irrigation Water Quality Index values in the dam reservoir were found to be between 41 and 59, according to classifications for different water uses, values below 60 indicate that water is of poor quality for irrigation and treatment is recommended to make reservoir water more suitable for irrigation. The results of water analysis in our study area reveal the presence of acute pollution which is certainly caused by direct releases of either industrial or domestic origin, and we note that this pollution remains variable depending on the collection periods. Also, chloride-calcium and sulfate facies are the most dominant in sampling periods for reservoir water, resulting in poor water quality for irrigation. In addition, water is, therefore, highly mineralized and is likely to be suitable for irrigation of certain species (cucumbers…) that are well tolerant to salt and on well-drained and leached soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adakole JA (2000). The effect of domestic, agricultural and industrial effluents on the water quality and biota of Bindare stream, Zaria, Nigeria. Ph.D. Thesis, Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria, 256

  • Adam Khalifa M, Liu D, Song K, Mohamed MAA, Elsiddig A, Basheer AE (2019) Hydrochemical analysis and fuzzy logic method for evaluation of groundwater quality in the North Chengdu Plain China. Int J Environ Res Public Health 16:302. https://doi.org/10.3390/ijerph16030302

    Article  Google Scholar 

  • Agence Nationale des Barrages et Transferts (ANBT, 2014) Rapport Annuel D’activité sur L’état des Barrages Algériens; ANBT: Kouba, Algeria, 2014. (In French)

  • Ajayi F, Nduru M, Oningue A (1990) Halting the salt that kills crops. Afr Farmer 4:10–12

    Google Scholar 

  • Akkoyunlu A, Akiner M (2012) Pollution evaluation in streams using water quality indices: a case study from Turkey’s Sapanca Lake Basin. Ecol Indic 18:501–511

    Google Scholar 

  • Al Hadrami SN (2013) Preparation, Characterization and Catalytic Activity Study of Transition Metal Doped Porous -Alumina. Master Thesis, United Arab Emirates University, Abu Dhabi, United Arab Emirates, January (2013). Available online: https://core.ac.uk/download/pdf/230628289.pdf. Accessed 12 June 2020

  • Allen LN, MacAdam JW (2020) Irrigation and water management. Forages Sci Grassl Agric 2:497–513

    Google Scholar 

  • Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. CNEXO

  • ANBT (2008) Agence Nationale des Barrages et Transferts. In: Etude de protection des bassins versants des barrages de Oued Fodda, Ghrib et Boughazoul. Alger

  • Andreea-Mihaela D (2018) Water pollution and water quality assessment of major transboundary rivers from Banat (Romania). Hindawi J Chem 2018: 9073763

  • Arrignon J (1976) Aménagement écologique et piscicole des eaux douces. Gauthier-Villard, Paris, p 329

    Google Scholar 

  • Arrignon J (1991) Aménagement écologiques et piscicoles des eaux douces. 4éme édition Gauthier Villars, p 631

  • Banwart SA, Chorover J, Gaillardet J, Sparks D, White T, Anderson S, Aufdenkampe A, Bernasconi S, Brantley SL, Chadwick O, Dietrich WE, Duffy C, Goldhaber M, Lehnert K, Nikolaidis NP, Ragnarsdottir K (2013) Sustaining earth’s critical zone basic science and interdisciplinary solutions for global challenges. The University of Sheffield, United Kingdom

    Google Scholar 

  • Benkhelifa M, Daoud Y, Belkhodja M, Tessier D (2008) Effets de la salinite et de la sodicite sur la conductivite hydraulique saturee de melanges de sable et d’argile. Conference paper. Université Abdel Hamid Ibn Badis, Mostaganem. https://www.researchgate.net/publication/274387476

  • Benouara N, Laraba A, Rachedi L (2016) Assessment of groundwater quality in the Seraidi region (north-east of Algeria) using NSF-WQI. Water Sci Technol Water Supply 16(4):1132–1137

    Google Scholar 

  • Bhat SA, Meraj G, Yaseen S, Bhat AR, Pandit AK (2013) Assessing the impact of anthropogenic activities on spatio-temporal variation of water quality in Anchar lake, Kashmir Himalayas. Int J Environ Sci 3(5):1625–1640

    Google Scholar 

  • Biazar SM, Rahmani V, Isazadeh M, Kisi O, Dinpashoh Y (2020) New input selection procedure for machine learning methods in estimating daily global solar radiation. Arab J Geosci 13:431. https://doi.org/10.1007/s12517-020-05437-0

    Article  Google Scholar 

  • Brooks PD, Chorover J, Fan Y, Godsey SE, Maxwell RM, Mc Namara JP, Tague C (2015) Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour Res. https://doi.org/10.1002/2015WR017039

    Article  Google Scholar 

  • Chapman D (1996) Water quality assessments - a guide to use of biota sediments and water in environmental monitoring. Chapman & Hall, University Press, Cambridge, Great Britain

    Google Scholar 

  • Cheridi Lounis et djebouri Tassadit (2016). Simulation unidimensionnelle du transport solide avec HEC-RAS 4.1.0 : Application au sous bassin de l’oued Cheliff-Ghrib. Mémoire de Master, université Mouloud MAMMERI, Tizi-Ouzou, Algérie, p 94

  • Chilundo M, Kelderman P, Ókeeffe JH (2008) Design of a water quality monitoring network for the Limpopo River Basin in Mozambique. Phys Chem Earth Parts a/b/c 33:655–665

    Google Scholar 

  • Conesa Fdez-Vitora V (1995) Methodological guide for environmental impact evaluation (Gu.a Metodolo.gica para la Evaluacion del Impacto Ambiental), 2nd edn. Mundi-Prensa, Madrid, p 390

    Google Scholar 

  • De La Mora-Orozco C, Flores-Lopez H, Rubio-Arias H, Chavez-Duran A, Ochoa-Rivero J (2017) Developing a water quality index (WQI) for an irrigation dam. Int J Environ Res Public Health 14:439. https://doi.org/10.3390/ijerph14050439

    Article  Google Scholar 

  • Debieche TH (2002) Evolution de la qualité des eaux (salinité, azote et métaux lourds) sous l’effet de la pollution saline, agricole et industrielle. Application à la basse plaine de la Seybouse. Thèse de doctorat. Ecole doctorale Homme, Environnement, Santé. Science de la terre

  • El Haouati H, Guechaoui M, Djermane K, Chaabat C, Dis et Arab A (2013) Etude préliminaire physico-chimique des eaux du barrage Gargar (w. Relizane). In: Proceeding du Séminaire International sur l'Hydrogéologie et l'Environnement SIHE 2013 Ouargla

  • Hallouz F, Meddi M, Mahé G, Ali RS, Chebana F (2020) Statistical study of rainfall and sediment transport in the North west of Algeria. In: 3rd Conference of the Arabian Journal of Geosciences (CAJG), held online, on 2–5 Nov 2020

  • Fan X, Cui B, Zhao H et al (2010) Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environ Sci 2:1220–1234

    Google Scholar 

  • Food and Agriculture Organization (FAO) (1985) Soil Survey Investigation for Irrigation. Soil Bulletin 42; Food and Agriculture Organization of the United Nations: Rome, Italy

  • FAO (1996) La qualité d'eau dans l'irrigation, Bulletin n°29 de l'Organisation Mondiale pour l'Alimentation et l'Agriculture

  • Fathi E, Zamani-Ahmadmahmoodi R, Zare-Bidaki R (2018) Water quality evaluation using water quality index and multivariate methods Beheshtabad River, Iran. Appl Water Sci 8:210. https://doi.org/10.1007/s13201-018-0859-7

    Article  Google Scholar 

  • Faye C, Wade CT, Demba DI (2020) A dissymmetry in the figures related to the covid-19 pandemic in the world: what factors explain the difference between Africa and the rest of the world? medRxiv. https://doi.org/10.1101/2020.05.17.20104687

    Article  Google Scholar 

  • Ganapati SV (1960) Ecology of tropical waters. In: Proceedings of Symposium on Algalogy, ICAR, New Delhi, pp 204–218

  • Gaujous D (1995) La pollution des milieux aquatiques. Aide mémoire 2éme édn, Paris, p 217

  • Gholami S, Srikantaswamy S (2009) Statistical multivariate analysis in the assessment of river water quality in the vicinity of KRS Dam, Karnataka, India. Nat Resour Res 18:235–247

    Google Scholar 

  • González-Ortegón E, Subida MD, Cuesta JA, Arias AM, Fernández-Delgado C, Drake P (2010) The impact of extreme turbidity events on the nursery function of a temperate European estuary with regulated freshwater inflow. Estuar Coast Shelf Sci 87:311–324

    Google Scholar 

  • Guide des prescriptions techniques pour la surveillance physico-chimique des milieux aquatiques Rapport AQUAREF (2011) – 6 p + manuel d’utilisation du guide

  • Hallouz F, Meddi M, Cherfaoui H, Hallouz M, Ali RS (2021) Irrigation efficiency in the Large Irrigated Perimeters: case of Upper Cheliff perimeter (northwestern Algeria). Taiwan Water Conservancy 69(2):58–88. https://doi.org/10.6937/TWC.202106/PP_69(2).0007

    Article  Google Scholar 

  • Hallouz F, Meddi M, Bouchali H, et Boudani S, (2014). Study of the quality of surface waters of the watershed of High Cheliff (North West Algeria). In: 4th Asia Africa Resource Mineral Conference – Algiers October 13–16th 2014

  • Helena B, Pardo R, Vega M, Barrado E, Fernández JM, Fernández L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816

    Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Google Scholar 

  • House MA (1990) Water quality indices as indicators of ecosystem change. Environ Model Assessment 15(3):255–263

    Google Scholar 

  • House MA, Ellis JB (1987) The development of water quality indices for operational management. Water Sci Technol 19(9):145–154

    Google Scholar 

  • Ionus O (2010) Water quality index—assessment method of the Motru River water quality (Oltenia, Romania). Ann Univ Craiova Series Geography 13:74–83

    Google Scholar 

  • IPCC, 2013. Climate Change (2013) The physical science basis. Working Group 1, contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK

  • Jahin HS, Abuzaid AS, Abdellatif AD (2020) Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ Technol Innov 17:100532. https://doi.org/10.1016/j.eti.2019.100532

    Article  Google Scholar 

  • Jain Y, Dhanija SK (2000) Studies in a polluted centric water body of Jabalpur with special reference to physico-chemical and biological parameters. J Environ Biol 7:83–88

    Google Scholar 

  • Johnson GL, Hanson CL (1995) Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J Appl Meteorol 34(1):68–87

    Google Scholar 

  • Kumar A, Siddiqui EN (1997) Quality of drinking water in and around Ranchi. Int J Environ Protection 18(5):339–345

    Google Scholar 

  • Kurunc A, Aslan GE, Karaca C, Tezcan A, Turgut K, Karhan M, Kaplan BE (2020) Effects of salt source and irrigation water salinity on growth, yield and quality parameters of Stevia rebaudiana Bertoni. Sci Hortic 270:109458

    Google Scholar 

  • Lacaze JC (1996) Eutrophisation des eaux marines et continentales: causes, manifestation, conséquences et moyens de lutte. Edition Ellipse, p 191

  • L'eau en Loire-Bretagne – juin( 2003) / n° 68. L'eau : véritable enjeu mondial Afrique, Amérique du Nord, Amérique du Sud, Asie, Europe

  • Léon-Vizcaíno R (1991) Indices de Calidad del Agua, Formas de Estimarlos y Aplicación en la Cuenca Lerma-Chapala México. Instituto Tecnológico Del Agua: Morelos, Mexico 1991:1–7

    Google Scholar 

  • Lin Y, Han P, Huang Y, Yuan GL, Guo X, Li J (2017) Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. J Geochem Explor 173:110–118

    Google Scholar 

  • Machael AM (1985) Irrigation principles and practice. Vikas Publishing House Ltd, New Delhi, India, pp 702–720

    Google Scholar 

  • Massoud MA (2012) Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environ Monit Assess 184:4151–4160

    Google Scholar 

  • Merhabi F, Amine H, Halwani J (2019) Evaluation de la qualité des eaux de surface de la rivière Kadicha. J Scientifique Libanais 20(1):10–34

    Google Scholar 

  • Merili Samiha et Belouazani Hamida (2016) Origine et caractéristiques des eaux d’irrigation de la plaine de Djendel (Barrage Ghrib). Memoire de master de l’université de Khemis Miliana, Algérie, p 128

  • Miquel G (2003) La qualité de l'eau et l'assainissement en France. Rapport de l'OPECST n° 215 (2002–2003). https://www.senat.fr/rap/l02-215-1/l02-215-1.html

  • Misaghi F, Delgosha F, Razzaghmanesh M, Myers B (2017) Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River. Sci Total Environ 589:107–116

    Google Scholar 

  • Mokhtari El Hadj (2017) Impact de l’érosion hydrique sur l’envasement du barrage Ghrib. Thèse de Doctorat E-Sciences, université Hassiba BEN BOUALI, Chlef, Algérie, p 272

  • National Research Council (2001) Basic research opportunities in earth science. National Academy Press Washington, D.C. https://doi.org/10.17226/9981

  • Nisbet M, et Verneau. J (1970). Composant chimiques des eaux courantes, discussions et propositions des classes entant que base d’interprétation des analyses chimiques. Annale de limnologie : 1.6 fasc 2, pp 161–190

  • Niswander SF, Mitsch WJ (1995) Functional analysis of a two-year-old created in stream wetland: hydrology, phosphorus retention and vegetation survival and growth. Wetlands 15(3):212–215

    Google Scholar 

  • Nnorom IC, Ewuzie U, Eze SO (2019) Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon 5(1):e01123. https://doi.org/10.1016/j.heliyon.2019.e01123

    Article  Google Scholar 

  • Nong XZ, Shao DG, Zhong H, Liang JK (2020) Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res 178:115781

    Google Scholar 

  • Noori R, Abdoli MA, Jalili Ghazizade M et al (2009) Comparison of neural network and principal component-regression analysis to predict the solid waste generation in Tehran. Iran J Public Health 38:74–84 (In Persian)

    Google Scholar 

  • Noori R, Khakpour A, Omidvar B et al (2010) Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst Appl 37:5856–5862 ((In Persian))

    Google Scholar 

  • Noori R, Berndtsson R, Hosseinzadeh M, Adamowski JF, Abyaneh MR (2019) A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ Pollut 2019(244):575–587

    Google Scholar 

  • Noshadi M, Ghafourian A (2016) Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran). Environ Monit Assess 188(7):419. https://doi.org/10.1007/s10661-016-5412-2

    Article  Google Scholar 

  • Office National de l’Irrigation et du Drainage- Direction Générale (ONID-DG) (2012) L’ONID et sa contribution au développement de l’agriculture. Regroupement ABH-Chlef, fevrier-2012, p 15. http://www.onid.com.dz

  • Office National de l’Irrigation et du Drainage (ONID) (2006) Monographie de l’Aménagement Hydro-Agricole Du Périmètre du Haut Chéliff (W) de Ain-Defla, p 66. www.onid.com.dz

  • Osuolale O, Okoh A (2017) Human enteric bacteria and viruses in five wastewater treatment plants in the Eastern Cape, South Africa. J Infect Public Health 10:541–547. https://doi.org/10.1016/j.jiph.2016.11.012

    Article  Google Scholar 

  • Perez ARS (2011) Characterizing Salinity Tolerance in Greenhouse Roses. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, August 2011. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2009-05-725. Accessed 15 Nov 2020

  • Prasannakumari AA, Ganagadevi T, Sukeshkumar CP (2003) Surface water quality of river Neyyar- Thiruvanathapuram, Kerala, India. Pollut Res 22(4):515–525

    Google Scholar 

  • Rasul MK, Hassan WH (2013) Evaluation of irrigation water quality index (IWQI) for al-Dammam confined aquifer in the west and southwest of Karbala city, IRAQ. Int J Civil Eng (IJCE) 2(3):21–34

    Google Scholar 

  • Razmkhah H, Abrishamchi A, Torkian A (2010) Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). J Environ Manag 2010(91):852–860

    Google Scholar 

  • Rodier J (2009) L’analyse de l’eau – eaux naturelles, eaux résiduaires, eau de mer, 9ème édition. Dunod, Paris, p 1475

    Google Scholar 

  • Roselli L, Fabbrocini A, Manzo C, D’Adamo R (2009) Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy). Estuar Coast Shelf Sci 2009(84):539–552

    Google Scholar 

  • US Salinity Laboratory Sta_. Diagnosis and Improvement of Saline and Alkali Soils; Agriculture Handbook No. 60; Richards, L.A., Ed.; United States Department of Agriculture: Washington, DC, USA, 1954

  • Saluja R, Garg JK (2015) Surface water quality assessment of Bhindawas lake (Haryana, India) using multivariate statistical techniques. J Global Ecol Environ 2(1):34–46

    Google Scholar 

  • Sarkar B, Islam A (2019) Assessing the suitability of water for irrigation using major physical parameters and ion chemistry: a study of the Churni River. India Arab J Geosci 2019(12):637

    Google Scholar 

  • Schueneman TJ (2001) Characterization of sulfur sources in the EAA. Soil Crop Sci Soc Fla Proc 60:49–52

    Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. J Environ Model Softw 22:464–475

    Google Scholar 

  • Simeonov V, Stratis JA, Samara C et al (2003) Assessment of the surface water quality in Northern Greece. Water Res 37(17):4119–4124

    Google Scholar 

  • Simeonova V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimitzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124

    Google Scholar 

  • Simsek C, Gunduz O (2007) IWQ index: a GIS integrated technique to assess irrigation water quality. Environ Monit Assess 128:277–300

    Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  • Singh KP, Malik A, Singh VK, Basant N, Sinha S (2006) Multi-way modeling of hydro-chemical data of an alluvial river system-a case study. Anal Chim Acta 571(2):248–259

    Google Scholar 

  • Sirajudeen J, Mubashir M (2013) Statistical approach and assessment of physico-chemical status of ground water in near proximity of South Bank Canal, Tamil Nadu, India. Arch Appl Sci Res 5:25–32

    Google Scholar 

  • Touhari F, Mehaiguene M, Messelmi H (2018) Évolution de la qualité des eaux des barrages dans le bassin du Haut Cheliff. SAGREN 2(1):41–57

    Google Scholar 

  • Vaithiyanathan P, Jha PK, Subramanian V (1993) Phosphorus distribution in the sediments of the Hoogly (Ganges) Estuary India. Estuar Coast Shelf Sci 37(6):603–614

    Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of eutrophication of lakes and flowing waters with special reference to nitrogen and phosphorus as factors in Eutrophication. OECD, France 27:182

    Google Scholar 

  • Water Quality Criteria (1972) A Report of the Committee on Water Quality Criteria, National Academy of Sciences, National Academy of Engineering. Environmental Protection Agency, Washington, DC

  • Wetzel RG (1983) Limnology (1983), 2nd edn. Saunders College of Publishing, New York

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. https://books.google.dz/books?hl=fr&lr=&id=uKjS__1trwEC&oi=fnd&pg=PA1&ots=pA4sO2bbcX&sig=YHH80WY4GfyR0oeuaS1t1bpiPJg&redir_esc=y#v=onepage&q&f=false

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7:3973–3982

    Google Scholar 

  • Yogendra K, Puttaiah ET (2008) Determination of water quality index and suitability of an urban water body in Shimoga town, Karnataka. In: Sengupta M, Dalwani R (eds) The 12th World Lake Conference, pp 342–346

  • Youmbi JGT, Feumba R, Njitat VT, De Marsily G, Ekodeck GE (2013) Pollution de l’eau souterraine et risques sanitaires à Yaoundé au Cameroun. Comptes Rendus - Biologies 336:310–316. https://doi.org/10.1016/j.crvi.2013.04.013

    Article  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Jafari A, Alibeygi-Beni H (2017) Potential ecological risk assessment, enrichment, geoaccumulation, and source identification of metals in the surface sediments of Choghakhor Wetland. Iran Environ Earth Sci 76(11):398

    Google Scholar 

Download references

Acknowledgements

Thanks to ANRH and ANBT for the physical and chemical data. This work was done in the framework of Young Teams Associated with the IRD of ENSH Blida (Jeunes Équipes Associées à l’IRD).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza Hallouz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallouz, F., Meddi, M. & Ali Rahmani, S. Multivariate analysis to assess the quality of irrigation water in a semi-arid region of north west of Algeria: case of Ghrib reservoir. Environ Earth Sci 81, 158 (2022). https://doi.org/10.1007/s12665-022-10272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10272-5

Keywords

Navigation