Skip to main content

Advertisement

Log in

Hydrochemical and stable isotope data of water in karst aquifers during normal flow in South Africa

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The dolomite aquifer in Witwatersrand is one of the most important water resources in South Africa. The present paper aims to evaluate the hydrochemical and isotope (δ2H and δ18O) signature of water (n = 36) (groundwaters, surface waters, dams, springs, canal, cave and pipeline) of the Wonderfonteinspruit (WFS). These samples were analysed for the first time in the Centre for Water Sciences and Management (South Africa). The dominant anions are SO42− and Cl, while the dominant cations are Ca2+ followed by Mg+, Na+ and K+. A Piper diagram showed that there are two principal hydrochemical facies (1) Ca–Mg–Cl–SO4; (2) Ca–Mg–HCO3 in the study area. Bivariate plots revealed that the main hydrogeochemical processes influencing the water are water–rock interaction, mineral precipitation/dissolution, ions exchange and anthropogenic activities. The local meteoric water line (LMWL) was plotted for the first time for the WFS catchment based on precipitation data during six periods (November 2018 until June 2019) with the following equation δ2H = 7.39 * δ18O + 7.9‰ (R2 = 0.85). The results of stable isotopes (δ2H and δ18O) indicated that the water points from local precipitation and recent water, and the groundwater recharge is influenced by rapid infiltration river flow and return irrigation flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abyie TA, Mengistu H, Demlie MB (2011) Groundwater resource in the crystalline rocks of the Johannesburg area, South Africa. J Water Resour Prot 3:199–211

    Article  Google Scholar 

  • Al-Khashman OA (2008) Assessment of the spring water quality in The Shoubak area, Jordan. Environmentalist 28:203–215

    Article  Google Scholar 

  • Allan JA (2002) The Middle East Water question: hydropolitics and the global economy. I.B. Tauris Publishers, London, New York

    Google Scholar 

  • Ayadi Y, Mokadem N, Besser H, Khelifi F, Harabi S, Hamad A, Boyce A, Laouar R, Hamed Y (2018a) Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern Mediterranean basin (Teboursouk area, NW Tunisia). J Afr Earth Sci 137:208–217. https://doi.org/10.1016/j.jafrearsci.2017.10.018

    Article  Google Scholar 

  • Ayadi Y, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T, Hamed Y (2018b) Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). J Environ Earth Sci 77:349. https://doi.org/10.1007/s12665-018-7523-2

    Article  Google Scholar 

  • Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterization of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15:791–805

    Article  Google Scholar 

  • Barnard HC (2000) An Explanation of the 1:500 000 General Hydrogeological Map. Johannesburg 2526. Department of Water Affairs and Forestry

  • Belkhiri L, Boudoukha A, Mouni L (2010) Application of multivariate statistical methods for characterization of groundwater—a case study: Ain Azel Plain (Algeria). Geoderma 159:390–398

    Article  Google Scholar 

  • Bredenkamp DB (1993) Hydrological Evaluation of the West Rand dolomitic compartments: Zuurbekom, Gemsbokfontein East and Gemsbokfontein West. DWAF, Pretoria

    Google Scholar 

  • Brink ABA (1979) Engineering geology of South Africa, vol 1. Building Publications, Pretoria, p 319

    Google Scholar 

  • Buttrick DB, Van Schalkwyk A, Kleywegt RJ, Watermeyer RB (2001) Proposed method for dolomite land hazard and risk assessment in South Africa. J South African Inst Civil Eng 43(2):27–36

    Google Scholar 

  • Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western Mediterranean region at the three different time scales. Geophys Res Lett 28:1215–1218. https://doi.org/10.1029/2000GL012407

    Article  Google Scholar 

  • Chea GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Kim K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1–3):272–283

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 328

    Google Scholar 

  • Coetzee H, Wade PW, Ntsume G, Jordaan W (2002) Radioactivity study on sediments in a dam in the Wonderfontein spruit catchment. DWAF-Report 2002, Pretoria, South Africa

  • Coetzee H, Wade P, Winde F (2006a) An assessment of sources, pathways, mechanisms and risks of current and future pollution of water and sediments in the Wonderfonteinspruit Catchment. WRC Report No 1214/1/06, ISBN No 1-77005-419-7

  • Coetzee H, Winde F, Wade PW (2006b) An assessment of sources, pathways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit Catchment. WRC, Pretoria

    Google Scholar 

  • Cole DI (1998) Uranium. In: Wilson MGC, Anhaeusser CR (eds) Mineral resources of South Africa. Council for Geoscience Handbook, vol 16, pp 642–658

  • Connor JA, Paquette S, Mchugh T, Gie E, Hemingway M, Bianchi G (2017) Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater. J Environ Manag 204:721

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 4:436–468

    Google Scholar 

  • Darwish T, Atallah T, Francis R, Saab C, Jomaa I, Shaaban A, Sakka H, Zdruli P (2011) Observations on soil and groundwater contamination with nitrate: a case study from Lebanon-East Mediterranean. Agric Water Manage 99(1):74–84

    Article  Google Scholar 

  • Das N, Sarma KP, Patel AK, Deka JP, Das A, Kumar A, Shea PJ, Kumar M (2017) Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environ Earth Sci 76:183. https://doi.org/10.1007/s12665-017-6488-x

    Article  Google Scholar 

  • Dassi L, Tarki M, El Mejri H, Ben Hammadi M (2018) Effect of over pumping and irrigation stress on hydrochemistry and hydrodynamics of a Saharan oasis groundwater system. Hydrol Sci J 63(2):227–250. https://doi.org/10.1080/02626667.2017.1417595

    Article  Google Scholar 

  • De Klerk TC (2018) An integrated rainfall-runoff water quality model in a mine impacted karst environment. PhD thesis, Potchefstroom Campus of the North-West University, South Africa

  • De Kock WP (1967) The dolomite eyes or fountains of the Wonderfontein Valley in western Transvaal. Fauna Flora Pretoria 18:56–66

    Google Scholar 

  • Dotsika E, Lykoudis S, Poutoukis D (2010) Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Glob Planet Chang 71:141–149

    Article  Google Scholar 

  • Dubois C, Quinif Y, Baele JM, Barriquand L, Bini A, Bruxelles L, Dandurand G, Havroni C, Kaufmann O, Lans B, Maire R, Martin J, Rodet J, Rowberry MD, Tognini P, Vergari A (2014) The process of ghost-rock karstification and its role in the formation of cave systems. Earth Sci Rev 131(2014):116–148

    Article  Google Scholar 

  • Durand JF (2012) The impact of gold mining on the Witwatersrand on the rivers and karst system of Gauteng and North West Province, South Africa. J Afr Earth Sc 68:24–43

    Article  Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 5:295–304

    Article  Google Scholar 

  • Els BG (1987) The auriferous Middelvlei Reef depositional system, West Wits Line, Witwatersrand Supergroup. Rand Afrikaans University, Johannesburg

    Google Scholar 

  • Els BG (2000) Unconformities of the auriferous, Neoarchæan Central Rand Group of South Africa: application to stratigraphy. J Afr Earth Sci 30:47–62

    Article  Google Scholar 

  • Enslin JF, Kriel JP (1967) The assessment and possible future use of the dolomitic groundwater resources of the Far West Rand. Papers of the international conference on water and peace, vol 2. US Government Printing Office, Washington DC, pp 1–10

    Google Scholar 

  • Eriksson PG, Reczko BFF (1995) The sedimentary and tectonic setting of the Transvaal Supergroup floor rocks to the Bushveld complex. J Afr Earth Sci 21(4):487–504

    Article  Google Scholar 

  • Faure G (1998) Principles and applications of geochemistry, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Fetter CW (2014) Applied hydrogeology, 4th edn. Pearson, UK

    Google Scholar 

  • Fleisher JNE (1981) The geohydrology of the dolomite aquifers of the Malmani Subgroup in the South-Western Transvaal, PhD thesis. Republic of South Africa. UFS, Bloemfontein

  • Foster MBJ (1988) The groundwater resources of the Far West Rand dolomitic compartments. DWAF, Pretoria

    Google Scholar 

  • Gaillardet J, Dupre B, Allegre CJ (1999a) Geochemistry of large river suspended sediment: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23–24):4037–4051

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999b) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Stumm W (ed) Equilibrium concepts in natural water systems. American Chemical Society, Washington, pp 222–242

    Chapter  Google Scholar 

  • Gat JR, Matsui E (1991) Atmospheric water balance in the Amazon Basin. An isotopic evapotranspiration model. J Geophys Res 96:1317913188. https://doi.org/10.1029/91JD00054

    Article  Google Scholar 

  • Hagedorn B, Whittier RB (2015) Solute sources and water mixing in a flashy mountainous stream (Pahsimeroi River, U.S. Rocky Mountains): implications on chemical weathering rate and groundwater–surface water interaction. Chem Geol 391:123–137

    Article  Google Scholar 

  • Hamed Y (2015) Fonctionnement et dynamisme des ressources hydriques des aquifères en milieu aride à semi-aride: approche hydrogéologique, hydrochimique et isotopique. HDR. Faculty of Sciences, Sfax, p 160

  • Hamed Y, Dhahri F (2013) Hydro-geochemical and isotopic composition of groundwater and meteoric water, with emphasis on sources of salinity, in the aquifer system in Northwestern Tunisia. J Afr Earth Sci. https://doi.org/10.1006/s22517-013-0313-3

    Article  Google Scholar 

  • Hodgson FDI, Usher BH, Scott R, Zeelie S, Cruywagen LM, De Necker E (2001) Prediction techniques and preventative measures relating to the post operational impact of underground mines on the quality and quantity of groundwater resources. Report no. 699/1/01. Water Research Commission, Pretoria

  • IWQS (Institute for Water Quality Studies of the Department of Water Affairs and Forestry, South Africa) (1999) Report on the radioactivity monitoring programme in the Mooi River (Wonderfonteinspruit) catchment. Report no. N/C200/00/RPQ/2399. Department of Water Affairs and Forestry, Pretoria

  • Jennings JE, Brink ABA, Louw A, Gowan GD (1965) Sinkholes and subsidences in the Transvaal dolomite of South Arica. In: Proc 6th international conference of soil mech. and found. eng., Montreal, pp 51–54

  • Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039

    Article  Google Scholar 

  • Ledesma-Ruiz R, Zapata EP, Parra R, Harter T, Mahlkencht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423

    Article  Google Scholar 

  • Machavaram MV, Krishnamurthy RV (1995) Earth surface-evaporative process: a case study from the Great Lakes region of the United States based on deuterium excess in precipitation. J Geochim Cosmochim Acta 59:4279–4283. https://doi.org/10.1016/0016-7037(95)00256-Y

    Article  Google Scholar 

  • Mc Carthy T, Rubidge B (2005) Earth and life. Kumba Resources, Johannesburg

    Google Scholar 

  • Mclean W, Jankowski J, Lavit N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. Groundwater, past achievement, and future challenges. A Balkema, Rotterdam, pp 567–573

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:50295033. https://doi.org/10.1029/JC084iC08p05029

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401–428

    Article  Google Scholar 

  • Mokadem N, Hamed Y, Ben Saad A, Gargouri I (2014) Atmospheric pollution in North Africa (ecosystems–atmosphere interactions): a case study in the mining basin of El Guettar–M’Dilla (southwestern Tunisia). Arab J Geosci 7:2071–2079

    Article  Google Scholar 

  • Mokadem N, Hamed Y, Hfaid M, Ben Dhia H (2015) Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar Oasis area, Southwest Tunisia. J Carbon Evap 30:417–437. https://doi.org/10.1007/s13146-015-0235-8

    Article  Google Scholar 

  • Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Sâad S (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin—Central Tunisia. J Afr Earth Sci 114:174–191. https://doi.org/10.1016/j.jafrearsci.2015.11.010

    Article  Google Scholar 

  • Morsy KM, Morsy AM, Hassan AE (2018) Groundwater sustainability: opportunity out of threat. Groundw Sustain Dev 7:277–285

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Invest. Rep. 99-4259

  • Pazand K (2014) Geochemical and hydrogeochemical evolution of groundwater in Ferdows area, Northeast of Iran. Environ Earth Sci 71:685–695

    Article  Google Scholar 

  • Pazand KJ, Sarvestani F (2013) Hydrogeochemical investigation in an arid region of Iran (Tabas, Central Iran). Environ Earth Sci 70:743–752

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Robb LJ, Robb VM (1998) Gold in the Witwatersrand Basin. In: Wilson MGC, Anhausser CR (eds) The mineral resources of South Africa handbook, vol 16. Council for Geoscience, Pretoria, pp 294–349

    Google Scholar 

  • Sandow MY, Banoeng-Yakubo B, Akabzaa T (2011) Characterization of the groundwater flow regime and hydrochemistry of groundwater from the Buem formation, eastern Ghana. Hydrol Process 25:2288–2301

    Article  Google Scholar 

  • Schrader A and Winde F (2015) Unearthing a hidden treasure: 60 years of karst research in the Far West Rand, South Africa. South Afr J Sci 111 (5/6)

  • Sharif MU, Davis RK, Steele KF, KimB KTM, Fazio JA (2008) Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). J Hydrol 350:41–55

    Article  Google Scholar 

  • Sissakian KV, Abdul Ahad AD, Al-Ansari N, Knutsso S (2016) Factors controlling the karstification process in the Fatha formation in Iraq. J Earth Sci Geotech Eng 6(3):147–162. ISSN: 1792-9040

  • Swart CJU, James AR, Kleywegt RJ, Stoch EJ (2003a) The future of the dolomitic springs after mine closure on the Far West Rand, Gauteng. RSA Environ Geol 44:751–770. https://doi.org/10.1007/s00254-003-0820-3

    Article  Google Scholar 

  • Swart CJU, Stoch E, Van Jaarsveld CF, Brink ABA (2003b) The lower Wonderfontein Spruit: an expose. Environ Geol 43:635–653

    Article  Google Scholar 

  • Truesdell AH, Jones BF (1973) WATEQ, a computer program for calculating chemical equilibria of natural waters: NTIS PB2-20464, p 77

  • Tsujimura M, Abe Y, Tanaka T, Shimada J, Higuchi S, Yamanaka T, Davaa G, Oyunbaatar D (2007) Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semiarid region in eastern Mongolia. J Hydrol 333:47–57

    Article  Google Scholar 

  • Viljoen MJ, Reimold WU (2002) An introduction to South Africa’s geological and mining heritage. Geological Society and Mintek

  • Wade PW, Woodborne S, Morris WM, Vos P, Jarvis NV (2002) Tier 1 risk assessment of selected radionuclides in sediments of the Mooi River catchment. WRC report no 1095/1/02. Water Research Commission, Pretoria

  • Wang D (2006) Analysis on formation causes of nitrate contamination of shallow groundwater and control countermeasures in northern part of cretacaous ordos basin. Groundwater 26(4):12–15

    Google Scholar 

  • Wolmarans JF (1984) Ontwikkeling van die dolomiet gebied aan die verre Wes-Rand: Gebeure in perspektief, PhD thesis. UP, Pretoria

  • Yang Q, Li Z, Ma H, Wang L, Martin JD (2016) Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the South eastern part of Ordos’s basin, China. Environ Pollut 218:879–888. https://doi.org/10.1016/j.envpol.2016.08.017

    Article  Google Scholar 

  • Zhang X, Li X, Gao X (2016a) Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China. Environ Sci Pollut Res 23(7):6286–6299. https://doi.org/10.1007/s11356-015-5838-z

    Article  Google Scholar 

  • Zhang N, Liu B, Xiao C (2016b) Spatio-temporal variation of groundwater contamination using IEA-UEF in urban areas of Jilin City, North-eastern China. Water Sci Technol Water Supply J 16(5):1277–1286

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christian Steyn, Neil Kriel and Theuns van Wyk for their assistance with samples collection

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naziha Mokadem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokadem, N., Dennis, R. & Dennis, I. Hydrochemical and stable isotope data of water in karst aquifers during normal flow in South Africa. Environ Earth Sci 80, 519 (2021). https://doi.org/10.1007/s12665-021-09845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09845-7

Keywords

Navigation