Skip to main content

Advertisement

Log in

Hydrogeochemical and isotopic characteristics of water resources in Çubuk-Melikşah (Ankara/Turkey)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, the chemical characteristics, isotopic compositions (δ18O, δ2H), geothermal properties, and suitability for irrigation of groundwater resources were explored in Çubuk-Melikşah (Ankara/Turkey). Water types present in the study area were mainly CaMgHCO3 and NaHCO3, with isotope compositions ranging from − 10.6 to − 9.06 for δ18O and from − 75.62 to − 61.93 for δ2H. The mineral saturation index showed that samples were saturated with respect to aragonite, calcite, and dolomite, while anhydrite and gypsum were undersaturated. Reservoir temperatures, computed from silica geothermometers were 60–75 °C for Melikşah thermal water. Based on the sodium adsorption ratio, residual sodium carbonate, soluble sodium percentage, permeability index, sodium percentage, boron and electrical conductivity values, waters examined in the study area were generally considered to be suitable for irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Akıllı et al. 2010)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area northwest of Iran. J Environ Protect 1:30–40. https://doi.org/10.4236/jep.2010.11005

    Article  Google Scholar 

  • Agyemang VO (2020) Hydrochemical characterization and assessment of groundwater suitability for drinking, domestic and irrigation purposes in the Agona East District Ghana. Iconic Res Eng J 3(7):112–125 (ISSN: 2456-8880)

    Google Scholar 

  • Ağca N (2014) Spatial variability of groundwater quality and its suitability for drinking and irrigation in the Amik Plain (South Turkey). Environ Earth Sci 72:4115–4130. https://doi.org/10.1007/s12665-014-3305-7

    Article  Google Scholar 

  • Akıllı H, Turalı Ü, Tandır R et al (2010) Çubuk-Melikşah (Ankara) Sahası Jeotermal Enerji Aramaları Etüt Raporu, 11372 (in Turkish)

  • Akkuş İ, Akıllı H, Selda C et al (2005) Türkiye Jeotermal Kaynakları Envanteri. Maden Tetkik Arama Genel Müdürlüğü Envanter Serisi, pp 53–56 (in Turkish)

  • Appello CAJ, Postma D (1992) Geochemistry, groundwater and pollution. Balkema Press, Rotterdam

    Google Scholar 

  • Arnórsson S (2000) Isotopic and chemical techniques in geothermal exploration, development and use. IAEA, Austria

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rev. 1, U. N. Food and Agriculture Organization, Rome

  • Canik B (1998) Hidrojeoloji yeraltısularının aranması, işletilmesi ve kimyası. Ankara Üniversitesi Fen Fakültesi, Jeoloji Müh. Bölümü, Ankara, pp 286 (in Turkish)

  • Collins R, Jenkins A (1996) The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal. J Hydrol 185:71–86. https://doi.org/10.1016/0022-1694(95)03008-5

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture published as a water science and engineering, paper 4001, Department of Water Science and Engineering University of California

  • DSİ (1979) Çubuk Ovası Hidrojeolojik Etüt Raporu. 27–44 (in Turkish).

  • Eaton FM (1950) Significance of carbonates in irrigation waters. Soil Sci 69:123–133. https://doi.org/10.1097/00010694-195002000-00004

    Article  Google Scholar 

  • Erişen B, Ünlü MR (1980) Ankara-Çubuk-Kızılcahamam-Kazan alanının jeolojisi ve jeotermal olanakları. Maden Tetkik Arama Genel Müdürlüğü 38500(1):71 (in Turkish)

    Google Scholar 

  • Esmaeili A, Moore F (2012) Hydrogeochemical assessment of groundwater in Isfahan province. Iran Environ Earth Sci 67(1):107–120. https://doi.org/10.1007/s12665-011-1484-z

    Article  Google Scholar 

  • Farid I, Abbas MHH, Bassouny M et al (2020) Indirect impacts of irrigation with low quality water on the environmental safety. Egypt J Soil Sci. https://doi.org/10.21608/ejss.2019.15434.1294

    Article  Google Scholar 

  • Forrest J, Marcucci E, Scott P (2005) Geothermal gradients and subsurface temperatures in the northern Gulf of Mexico. Trans GCAGS 55:233–248

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermalsystems. Geothermics 5:41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  Google Scholar 

  • Fournier RO, Potter RW II (1982) A revised and expanded silica (quartz) geothermometer. Geothermal Resour Council Bull 11:3–12

    Google Scholar 

  • Gautam SK, Sharma D, Tripathi JK et al (2013) A study of the effectiveness of sewage treatment plants in Delhi region. Appl Water Sci 3:57–65. https://doi.org/10.1007/s13201-012-0059-9

    Article  Google Scholar 

  • Gautam SK, Maharana C, Sharma D et al (2015) Evaluation of groundwater quality in the Chotanagpur Plateau region of the Subarnarekha River Basin, Jharkhand State, India. Sustain Water Qual Ecol 6:57–74. https://doi.org/10.1007/s13201-012-0059-9

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria: Derivation of Na- K-Ca-Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach WF, Soto RC (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province. Costa Rica. United Kingdom. https://doi.org/10.1016/0883-2927(92)90022-U

  • Güngör T (2010) Oğulbey (Gölbaşı) akiferlerinin yeraltısuyu kalitesinin incelenmesi. Yüksek Lisans Tezi Gazi Üniversitesi Ankara (in Turkish)

  • Haldar K, Kujawa-Roeleveld K, Dey P et al (2020) Spatio-temporal variations in chemical-physical water quality parameters influencing water reuse for irrigated agriculture in tropical urbanized deltas. Sci Total Environ 708:134559. https://doi.org/10.1016/j.scitotenv.2019.134559

    Article  Google Scholar 

  • Han DM, Liang X, Jin MG et al (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcanol Geoth Res 189:92–104. https://doi.org/10.1016/j.jvolgeores.2009.10.011

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. U.S. Geol Surv Water Supply Paper 2254:1–263

    Google Scholar 

  • Kanber R, Kırda C, Tekinel O (1992) Sulama Suyu Niteliği ve Sulamada Tuzluluk Sorunları. Çukurova Üniversitesi Ziraat Fakültesi Yayınları 21:341 (in Turkish)

    Google Scholar 

  • Kargın M (2018) Çubuk-Melikşah (Ankara) su kaynaklarının hidrojeokimyasal ve izotopik incelenmesi. Yüksek Lisans Tezi Eskişehir Osmangazi Üniversitesi Eskişehir (in Turkish)

  • Katz BG, Coplen TB, Bullen TD et al (1997) Use of chemical andisotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 35:1014–1028. https://doi.org/10.1111/j.1745-6584.1997.tb00174.x

    Article  Google Scholar 

  • Kelley WP (1963) Use of saline irrigation water. Soil Sci 95(6):385–391

    Article  Google Scholar 

  • Keskin B, Kartal T (1976) Ankara Ili Çubuk kazası Melikşah jeotermal enerji alanına ilişkin arama sondajları kuyu bitirme raporu. Maden Tetkik Arama Genel Müdürlüğü 5737:4–16 (in Turkish)

    Google Scholar 

  • Kökçü M (2007) Melihşah kuzeyi (Ankara-Çubuk) Pliyosen yaşlı yapı taşlarını petrografik ve mineralojik özellikleri. Yüksek Lisans Tezi Ankara Üniversitesi Ankara (in Turkish)

  • Lakshmanan E, Kannan K, Senthil KM (2003) Major ion chemistry and identification of hydrogeochemical process of groundwater in part of Kancheepuram district, Tamilnadu, India. J Environ Geosci 10(4):157–166. https://doi.org/10.1306/eg100403011

    Article  Google Scholar 

  • Li PY, Wu JH, Qian H (2012) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69:2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  Google Scholar 

  • Mahmoudi N, Nakhaei M, Porhemmat J (2017) Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran. Environ Earth Sci 76:370. https://doi.org/10.1007/s12665-017-6698-2

    Article  Google Scholar 

  • Mallick J, Kumar A, Almesfer MK, Alsubih M, Singh CK, Ahmed M, Khan RA (2021) An index-based approach to assess groundwater quality for drinking and irrigation in Asir region of Saudi Arabia. Arab J Geosci 14(3):1–7. https://doi.org/10.1007/s12517-021-06506-8

    Article  Google Scholar 

  • Marghade D, Malpe DB, Zade AB (2012) Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environ Monit Assess 184:2405–2418. https://doi.org/10.1007/s10661-011-2126-3

    Article  Google Scholar 

  • Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range. Utah J Hydrol 172:31–59. https://doi.org/10.1016/0022-1694(95)02748-E

    Article  Google Scholar 

  • Mazor E (1991) Applied chemical and isotopic groundwater hydrology. Open University Press, Suffolk, p 274

    Google Scholar 

  • Mutlu H, Güleç N (1998) Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia, Turkey. J Volcanol Geoth Res 85:495–515. https://doi.org/10.1016/S0377-0273(98)00068-7

    Article  Google Scholar 

  • Nagaraju A, Suresh S, Killham K et al (2006) Hydrogeochemistry of waters of Mangampeta a barite mining area, Cuddapah basin, Andhra Pradesh, India. Turkish J Environ Sci 30:203–219

    Google Scholar 

  • Narany ST, Ramli MF, Aris AZK et al (2014) Identification of the hydrogeochemical processes in ground-water using classic integrated geochemical methods and geostatistical techniques in Amol-Babol plain. Iran Sci World J. https://doi.org/10.1155/2014/419058

    Article  Google Scholar 

  • Nicholson K (1993) Geothermal fluids: chemistry and exploration techniques. Springer-Verlag, Berlin, p 263

    Book  Google Scholar 

  • Özen T, Bülbül A, Tarcan G (2012) Reservoir and hydrogeochemical characterizations of geothermal fields in Salihli Turkey. J Asian Earth Sci 60:1–17. https://doi.org/10.1016/j.jseaes.2012.07.016

    Article  Google Scholar 

  • Piper AM (1944) Graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25(6):914–928

    Article  Google Scholar 

  • Ramesh K, Elango L (2012) Groundwater quality and its suitability for domestic and agricultural use in Tondiar River Basin, Tamil Nadu, India. Environ Monit Assess 184(6):3887–3899. https://doi.org/10.1007/s10661-011-2231-3

    Article  Google Scholar 

  • Rawat KS, Singh SK, Gautam SK (2018) Assessment of ground water quality for irrigation use: a peninsular case study. Appl Water Sci 8(8):233–2657. https://doi.org/10.1007/s13201-018-0866-8

    Article  Google Scholar 

  • Rehman F, Cheema T, Azeem T et al (2019) Groundwater quality of sargodha city and its suitability for domestic and irrigation purpose. Fresenius Environ Bull 28(11):7695–7700

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Soil Sci 78(2):154

    Article  Google Scholar 

  • Saleh A, AL-RUwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42:195–209. https://doi.org/10.1006/jare.1999.0511

    Article  Google Scholar 

  • Sayın M, Eyupoğlu SO (2005) Turkiye’deki yağışların kararlı izotop içeriklerini kullanarak yerel meteorik doğruların belirlenmesi II. Ulusal Hidrojeolojide İzotop Teknikleri Sempozyumu, İzmir, pp 323–345 (in Turkish)

    Google Scholar 

  • Schoeller H (1962) Les eaux souterraines. Massio et Cie, Paris

    Google Scholar 

  • Schoeller H (1977) Geochemistry of groundwater. Groundwater Studies an International Guide for Research and Practice, vol 15. UNESCO, Paris, pp 1–18

    Google Scholar 

  • Schwille F (1955) Ionenumtausch und der Chemismus von Grund- und Mineralwässern. Zeitschrift Der Deutschen Geologischen Gesellschaft 106:16–22

    Article  Google Scholar 

  • Setiawan T, Alam BYS, Haryono E (2020) Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java. Indonesia. Hydrogeol J 28:1635–2165. https://doi.org/10.1007/s10040-020-02128-8

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Pandey AC et al (2013) Integrated assessment of groundwater influenced by a confluence river sys-tem: concurrence with remote sensing and geochemical modelling. Water Resour Manag 27(12):4291–4313. https://doi.org/10.1007/s11269-013-0408-y

    Article  Google Scholar 

  • Tatlı S (1975) Çubuk-Melikşah alanının jeolojisi ve jeotermal enerji olanakları. Maden Tetkik Arama Genel Müdürlüğü 5674 Ankara (in Turkish)

  • Thakur T, Rishi MS, Pradeep K, Naik PK, Sharma P (2016) Elucidating hydrochemical properties of groundwater for drinking and agriculture in parts of Punjab, India. Environ Earth Sci 75:467. https://doi.org/10.1007/s12665-016-5306-1

    Article  Google Scholar 

  • Tijani MN (1994) Hydrochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environ Geol 24:194–202

    Article  Google Scholar 

  • Todd DK (1960) Salt water intrusion of coastal aquifers in the United States. Int Assoc Sci Hydrol 52:452–461

    Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, Hoboken, p 535

    Google Scholar 

  • Toscano R, Villanueva RCA, Martínez RC et al (2020) Hydrogeochemical characteristics and assessment of drinking water quality in the urban area of Zamora, Mexico. Water 12:556. https://doi.org/10.3390/w12020556

    Article  Google Scholar 

  • Truesdell AH, Hulston JR (1980) Isotopic evidence of environments of geothermal systems. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope chemistry. Elsevier, New York, pp 179–226

    Google Scholar 

  • Turkish Meteorological Directorate (2020) https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=projeksiyonlar. Accessed Mar 2020

  • USSL (1954) Diagnosis and improvements of saline and alkali soils. US Department of Agricultural Soils, US Department of Agricultural Hand Book 60, Washington, 11

  • Verhagen BT, Geyh MA, Frunlich K et al (1991) Isotope hydrological methods for the quantitative evaluation of groundwater resources in arid and semi-arid areas. Res Rep Federal Ministry Econ Cooper Federal Republic Germany Bonn 1991:7–122

    Google Scholar 

  • Wang Y, Song X, Li B et al (2018) Temporal variation in groundwater hydrochemistry driven by natural and anthropogenic processes at a reclaimed water irrigation region. Hydrol Res 49(5):1652–1668. https://doi.org/10.2166/nh.2018.123

    Article  Google Scholar 

  • Wigley TML (1977) WATSPEC: a computer program for determining the equilibrium speciation of aqueous solutions. Br Geomorph Res Group Tech Bull 20:48

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA Circular 969:19

    Google Scholar 

  • Xu P, Feng W, Qian H, Zhang Q (2019) Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China. Int J Environ Res Public Health 16(9):1492. https://doi.org/10.3390/ijerph16091492 (1–18)

    Article  Google Scholar 

  • Yastı MA (2008) Çubuk Ovasının Kuzeydoğusunun (Ankara) Hidrojeoloji İncelemesi. Yüksek lisans tezi. Ankara Üniversitesi, Ankara (in Turkish)

    Google Scholar 

  • Yuce G (2007) A geochemical study of the groundwater in the Misli basin and environmental implications. Environ Geol 51(5):857–868. https://doi.org/10.1007/s00254-006-0460-5

    Article  Google Scholar 

  • Yuce G, Ugurluoglu D, Dilaver AT, Eser T, Sayin M, Donmez M, Ozcelik S, Aydin F (2009) The effects of lithology on water pollution: Natural radioactivity and trace elements in water resources of Eskisehir Region (Turkey). J Water Air Soil Pollut 202(1–4):69–89. https://doi.org/10.1007/s11270-008-9959-6

    Article  Google Scholar 

  • Yuce G (2005) The vulnerability of groundwater dependent ecosystems: a study on the Porsuk river basin (Turkey) as a typical example groundwater and ecosystem. NATO ARW 44

  • Zhou Y, Li P, Chen M, Dong Z, Lu C (2020) Groundwater quality for potable and irrigation uses and associated health risk in southern part of Gu’an County, North China Plain. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00553-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank reviewers whose suggestions and comments improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Yasin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, D., Kargın, M. Hydrogeochemical and isotopic characteristics of water resources in Çubuk-Melikşah (Ankara/Turkey). Environ Earth Sci 80, 513 (2021). https://doi.org/10.1007/s12665-021-09813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09813-1

Keywords

Navigation