Skip to main content

Advertisement

Log in

Spatial distribution, controlling factors and failure mechanisms of the large-scale landslides in the urban area of Azazga city (northern Algeria)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The city of Azazga is facing extensive and damaging landslide hazard. The aim of this study was to investigate the inventory mapping, the deformation characteristics, the controlling factors and the failure mechanisms of the landslides in the urban area of Azazga based on field surveys, aerial photographs/satellite images interpretation and the exploitation of available data including rainfall database, boreholes, piezometers, inclinometers and laboratory tests. The prepared landslide inventory map indicates that the unstable urban perimeter covers an area of 281.6 ha which represents about 31% of the urban area. Analysis of the inventory data highlighted the action of two types of conditioning factors: (i) susceptibility factors represented by the presence of clay, marl deposits with low mechanical resistance characteristics, the presence of shallow aquifers, the morphology and steep slope, the tectonic features network and a dense hydrographic network; (ii) the triggering factors corresponds to the high intensity rainfall and the uncontrolled human activity. Statistical analysis of the relationship between the landslide occurrence and the landslide-conditioning factors shows that the highest density of landslides occur in quaternary scree and cretaceous clay flysch located on slopes ranging between 5° to 20°. The statistical results indicate that the highest concentration of landslides occurred in the highest rainfall classes ranging between 950 to 1050 mm. Additionally, the results showed the important role of the fluvial incision with more of the landslides occur at a distance of 50 m from the nearest rivers. These data also indicated that the high density of the landslides is concentrated in the farming and urban zones. The inclinometer measurement results reveal a deep rupture surfaces between 4 and 28 m located at the scree–flysch bedrock interface. According to the mechanism modes, landslides are controlled by the following: (i) the dip of the flysch formation layers, the schistosity planes and fractures downward slope direction; and (iii) the interface contact between the quaternary scree and flysch substratum. This work presents an exhaustive understanding of the causes, deformation characteristics and failure mechanisms of the large-scale landslides as a useful information for landslide hazard and risk mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agence Nationale des Ressources Hydriques ANRH (2019) Données de précipitations moyennes mensuelles et annuelles de la station hydroclimatique « Azazga école » pour la période 1950–2014. Unpublished Internal reports

  • AICHE- GEO-SOL, Bureau d'Etude Géotechnique (2013) Archives d’études de sols de la ville d’Azazga. Unpublished internal reports

  • Algerian daily newspaper (2012), March 11th, Le Temps d’Algérie

  • Algerian daily newspaper (2018) November 28th, El Watan

  • Algerian daily newspaper (2019) January, 17th, Liberté

  • Bahar R (2018) Numerical modeling of the effect of rainfall on Azazga landslide, Algeria. Landslides and engineered slopes. Experience theory and practice. CRC Press, pp 837–841

    Google Scholar 

  • Borgomeo E, Hebditch KV, Whittaker AC, Lonergan L (2014) Characterising the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy. Geomorphology 226(1):148–161. https://doi.org/10.1016/j.geomorph.2014.08.004

    Article  Google Scholar 

  • Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrains du quartier Bélouizdad, Constantine, Algérie. Bull Eng Geol Env. https://doi.org/10.1007/s10064-013-0465-8

    Article  Google Scholar 

  • Bouhadad Y, Benhamouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (Mw 5.2). J Nat Hazards 54:261–272. https://doi.org/10.1007/s11069-009-9466-0

    Article  Google Scholar 

  • Bourenane H (2017) Analyse spatiale, évaluation et cartographie des risques naturels: application à l’aménagement de la ville de Constantine (Nord Est Algérien). Thèse de Doctorat Es Sciences, Université de l’USTHB, Alger, p 300

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2014) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0616-6

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weights factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci. https://doi.org/10.1007/s12517-015-2222-8

    Article  Google Scholar 

  • CGS (2010) Etude de microzonage sismique de la ville de Azazga (Etape A3: Carte photogéologique). Center National de Recherche Appliquée en Génie Parasismique CGS. Unpublished Internal reports

  • CGS (2014, 2015 and 2017) Inventory of the 65 existing water points in the Azazga urban for Seismic microzonation study of urban areas in Azazga city. Center National de Recherche Appliquée en Génie Parasismique CGS. Unpublished internal reports

  • CGS (2019) Etude de microzonage sismique de la ville de Azazga (Etape A3: Carte géotechnique). Rapport interne non publié.

  • Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30(4):429–443. https://doi.org/10.1016/j.cageo.2003.08.013

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation andmitigation, TRB special report, 247. National Academy Press, Washington, pp 36–75

  • Dai FC, Lee CF (2001) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(2002):213–228. https://doi.org/10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. https://doi.org/10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  • Djerbal L, Melbouci B (2012) Le glissement de terrain d’Aïn-El- Hammam: causes et évolution. Bull Eng Geol Environ 71(3):587–597. https://doi.org/10.1007/s10064-012-0423-x

    Article  Google Scholar 

  • Djerbal L, Alimrina N, Melbouci B, Bahar R (2014) Mapping and management of landslide risk in the city of Azazga (Algeria). Landslide science for a safer geoenvironment. Springer, Cham, pp 463–468. https://doi.org/10.1007/978-3-319-05050-8_72

    Chapter  Google Scholar 

  • Djerbal L, Khoudi I, Alimrina N, Melbouci B, Bahar R (2017) Assessment and mapping of earthquake-induced landslides in Tigzirt city, Algeria. Nat Hazards 87(3):1859–1879. https://doi.org/10.1007/s11069-017-2831-5

    Article  Google Scholar 

  • Gelard JP (1979) Géologie du Nord—Est de la Grande Kabylie (un segment des zones interne de l’orogène littoral maghrébin). Thèse de doctorat.

  • Goswami R, Mitchell NC, Brocklehurst SH (2011) Distribution and causes of landslides in the eastern Peloritani of NE Sicily and western Aspromonte of SW Calabria, Italy. Geomorphology 132(2011):111–122. https://doi.org/10.1016/j.geomorph.2011.04.036

    Article  Google Scholar 

  • Guemache MA, Chatelain JL, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2011.01.005

    Article  Google Scholar 

  • Guirous L, Dubois L, Melbouci B (2014) Contribution à l’étude du mouvement de terrain de la ville de Tigzirt (Algérie). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0624-6

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hallal N, Dubois L, Bougdal R, Djouder F (2017) Instabilités gravitaires dans la région de Béjaïa (Algérie): inventaire et appréciation de l’importance relative des différents paramètres conduisant au déclenchement, au maintien ou à l’activation des instabilités. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1050-3

    Article  Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21. https://doi.org/10.1016/j.enggeo.2010.06.013

    Article  Google Scholar 

  • Laribi A, Walstra J, Ougrine M, Seridi A, Dechemi N (2014) Use of digital photogrammetry for the study of unstable slopes in urban areas: case study of the El Biar landslide, Algiers. Eng Geol 187(2015):73–83. https://doi.org/10.1016/j.enggeo.2014.12.018

    Article  Google Scholar 

  • LCTP (1998–2014) Archives d’études de sols de la ville d’Azazga. Laboratoire des Travaux Publics, Période entre 1998–2014. Unpublished internal reports

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115:661–672. https://doi.org/10.1007/s12040-006-0004-0

    Article  Google Scholar 

  • Li S, Xu Q, Tang M, Iqbal J, Liu J, Xing Z, Liu F, Zhu D (2019) Characterizing the spatial distribution and fundamental controls of landslides in the three gorges reservoir area, China. Bull Eng Geol Environ 78:4275–4290. https://doi.org/10.1007/s10064-018-1404-5

    Article  Google Scholar 

  • LNHC (2003–2008) Archives d’études de sols de la ville d’Azazga. Laboratoire des Travaux Publics, Période entre 2003–2008. Unpublished Internal reports

  • LTPC Laboratoire des Travaux Publics du centre (1985–1987) Archives d’études de sols de la ville d’Azazga, Période entre 1985 et 1987. Unpublished internal reports

  • ORGM (1996) Geological map at scale of 1/50,000. Publications du Service Géologique, Algérie

    Google Scholar 

  • ORGM (1997) Geological map of Azefoune at 1/50. 000scal. Publ. Serv. Géol. Algérie

    Google Scholar 

  • Ouyang C, Zhao W, Xu Q, Peng D, Li W, Wang D, Zhou S, Hou S (2018) Failure mechanisms and characteristics of the 2016 catastrophic rockslide at Su village, Lishui, China. Landslides 15:1391–1400. https://doi.org/10.1007/s10346-018-0985-1

    Article  Google Scholar 

  • Pedrazzini A, Humair F, Jaboyedoff M, Tonini M (2016) Characterisation and spatial distribution of gravitational slope deformation in the upper Rhone catchment (western Swiss Alps). Landslides 13:259–277. https://doi.org/10.1007/s10346-015-0562-9

    Article  Google Scholar 

  • Raymond D (1974) Evolution sédimentaire et tectonique du Nord—Ouest de la Grande Kabylie (Algérie) au cours du cycle Alpin—Thèse de doctorat, sciences naturelles, Université Pierre et Marie Curie (Paris VI), Département de géologie Structurale.

  • Riheb H, Abderrahmane B, Yacine L, Mustapha B, El Madjid A, Cc AD (2012) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302(2013):224–237. https://doi.org/10.1016/j.quaint.2012.11.027

    Article  Google Scholar 

  • Su LJ, Hu KH, Zhang WF, Wang J, Lei Y, Zhang CL, Cui P, Alessandro P, Zheng QH (2017) Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan. China J Mt Sci 14(9):1689–1700. https://doi.org/10.1007/s11629-017-4609-3

    Article  Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at largescales: application to a complex mountainous environment. Geomorphology 92:38–59. https://doi.org/10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • Van Westen CJ (2000) The modelling of landslide hazards using Gis. Surv Geophys 21:241–255. https://doi.org/10.1023/A:1006794127521

    Article  Google Scholar 

  • Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro tunisiens. Ph.D thesis, Paris VI University

  • Wang J, Xiao L, Zhang J, Zhu Y (2019) Deformation characteristics and failure mechanisms of a rainfall-induced complex landslide in Wanzhou County, three Gorges Reservoir, China. Landslides. https://doi.org/10.1007/s10346-019-01317-1

    Article  Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine (Algérie, Maroc, Tunisie): structure, strati-graphie et évolution du trias au miocène. Rev Géol Dynam Géogr Phys 24:201–297

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks and gratitude to the local companies (ONM, LNTPB, LTPE and ANRH) for providing various datasets needed for this research. The authors would like also to express their sincere appreciation and gratitude to the reviewers and the handling editor for their valuable comments, suggestions and corrections for improving the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bourenane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourenane, H., Braham, M., Bouhadad, Y. et al. Spatial distribution, controlling factors and failure mechanisms of the large-scale landslides in the urban area of Azazga city (northern Algeria). Environ Earth Sci 80, 313 (2021). https://doi.org/10.1007/s12665-021-09607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09607-5

Keywords

Navigation